Skip to main content
Log in

Sensitivity Analysis of Optimal Control Problems Governed by Nonlinear Hilfer Fractional Evolution Inclusions

  • Published:
Applied Mathematics & Optimization Submit manuscript

Abstract

This article studies sensitivity properties of optimal control problems that are governed by nonlinear Hilfer fractional evolution inclusions (NHFEIs) in Hilbert spaces, where the initial state \(\xi \) is not the classical Cauchy, but is the Riemann–Liouville integral. First, we obtain the nonemptiness and the compactness properties of mild solution sets \(\mathbb {S}(\xi )\) for NHFEIs, and also establish an extension Filippov’s theorem. Then we obtain the continuity and upper semicontinuity of optimal control problems connected with NHFEIs depending on a initial state \(\xi \) as well as a parameter \(\lambda \). Finally, An illustrating example is given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Aubin, J.P., Cellina, A.: Differential Inclusions. Springer-Verlag, New York (1984)

    Book  Google Scholar 

  2. Balder, E.J.: Necessary and sufficient conditions for \(L^{1}\)-strong weak lower semicontinuity of integral functionals. Nonlinear Anal. 11, 1399–1404 (1987)

    Article  MathSciNet  Google Scholar 

  3. Benedetti, I., Loi, N.V., Malaguti, L.: Nonlocal problems for differential inclusions in Hilbert spaces. Set-Valued Var. Anal. 22, 639–656 (2014)

    Article  MathSciNet  Google Scholar 

  4. Benedetti, I., Malaguti, L., Taddei, V.: Semilinear evolution equations in abstract spaces and applications. Rend. Istit. Mat. Univ. Trieste. 44, 371–388 (2012)

    MathSciNet  MATH  Google Scholar 

  5. Chen, P.Y., Zhang, X.P., Li, Y.X.: Approximation technique for fractional evolution equations with nonlocal integral conditions. Mediterr. J. Math. 14, 226 (2017)

    Article  MathSciNet  Google Scholar 

  6. Denkowski, Z., Migórski, S., Papageorgiu, N.: An Introduction to Nonlinear Analysis (Theory). Kluwer Academic Publishers, Boston (2003)

    Book  Google Scholar 

  7. Frankowska, H.: A priori estimates for operational differential inclusions. J. Differ. Equ. 84, 100–128 (1990)

    Article  MathSciNet  Google Scholar 

  8. Gu, H.B., Trujillo, J.J.: Existence of mild solution for evolution equation with Hilfer fractional derivative. Appl. Math. Comput. 257, 344–354 (2015)

    MathSciNet  MATH  Google Scholar 

  9. He, J.W., Zhang, L., Zhou, Y., Ahmad, B.: Existence of solutions for fractional difference equations via topological degree methods. Adv. Diff. Equ. 2018, 153 (2018)

    Article  MathSciNet  Google Scholar 

  10. Heymans, N., Podlubny, I.: Physical interpretation of initial conditions for fractional differential equations with Riemann–Liouville fractional derivatives. Rheol. Acta 45, 765–771 (2006)

    Article  Google Scholar 

  11. Hilfer, R.: Applications of Fractional Calculus in Physics. World Scientific, Singapore (2000)

    Book  Google Scholar 

  12. Hu, S., Papageorgiou, N.S.: Handbook of Multivalued Analysis (Theory). Kluwer Academic Publishers, Dordrecht Boston, London (1997)

    Book  Google Scholar 

  13. Ito, K., Kunisch, K.: Sensitivity analysis of solutions to optimization problems in Hilbert spaces with applications to optimal control and estimation. J. Diff. Equat. 99, 1–40 (1992)

    Article  MathSciNet  Google Scholar 

  14. Jiang, Y.R., Huang, N.J., Yao, J.C.: Solvability and optimal control of semilinear nonlocal fractional evolution inclusion with Clarke subdifferential. Appl. Ana. 96(14), 2349–2366 (2017)

    Article  MathSciNet  Google Scholar 

  15. Kamenskii, M., Obukhovskii, V., Zecca, P.: Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Spaces. De Gruyter Berlin, New York (2001)

    Book  Google Scholar 

  16. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)

    MATH  Google Scholar 

  17. Li, X.W., Li, Y.X., Liu, Z.H., Li, J.: Sensitivity analysis for optimal control problems described by nonlinear fractional evolution inclusions. Fract. Calc. Appl. Anal. 21, 1439–1470 (2018)

    Article  MathSciNet  Google Scholar 

  18. Li, X.W., Liu, Z.H.: Sensitivity analysis of optimal control problems described by differential hemivariational inequalities. SIAM J. Control Optim. 56, 3569–3597 (2018)

    Article  MathSciNet  Google Scholar 

  19. Lightbourne, J.H., Rankin, S.M.: A partial functional differential equation of Sobolev type. J. Math. Anal. Appl. 93, 328–337 (1983)

    Article  MathSciNet  Google Scholar 

  20. Migórski, S.: Sensitivity analysis of distributed-parameter optimal control problems for nonlinear parabolic equations. J. Optim. Theory Appl. 87, 595–613 (1995)

    Article  MathSciNet  Google Scholar 

  21. Migórski, S.: The Rothe method for multi-term time fractional integral diffusion equations. Discrete Contin. Dyn. Syst. Ser. B 24(2), 719–735 (2019)

    MathSciNet  MATH  Google Scholar 

  22. Migórski, S., Ochal, A., Sofonea, M.: Nonlinear Inclusions and Hemivariational Inequalities: Models and Analysis of Contact Problems. Springer-Verlag, New York (2013)

    Book  Google Scholar 

  23. Nyamoradi, N., Zhou, Y., Ahmad, B., Alsaedi, A.: Variational approach to homoclinic solutions for fractional Hamiltonian systems. J. Optim. Theory Appl. 174(1), 223–237 (2017)

    Article  MathSciNet  Google Scholar 

  24. Papageorgiou, N.S.: Sensitivity analysis of evolution inclusions and its applications to the variational stability of optimal control problems. Houston J. Math. 16, 509–522 (1990)

    MathSciNet  MATH  Google Scholar 

  25. Papageorgiou, N.S.: On the variational stability of a class of nonlinear parabolic optimal control problems. Z. Anal. Anwend. 15, 245–262 (1996)

    Article  MathSciNet  Google Scholar 

  26. Papageorgiou, N.S., Kyritsi, S.: Handbook of Applied Analysis. Springer-Verlag, New York (2009)

    MATH  Google Scholar 

  27. Papageorgiou, N.S., Radulescu, V.D., Repovš, D.D.: Sensitivity analysis for optimal control problems governed by nonlinear evolution inclusions. Advances in Nonlinear Anal. 6, 199–235 (2017)

    Article  MathSciNet  Google Scholar 

  28. Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer-Verlag, New York (1983)

    Book  Google Scholar 

  29. Timoshin, S.A.: Variational stability of some optimal control problems describing hysteresis effects. SIAM J. Control Optim. 52(4), 2348–2370 (2014)

    Article  MathSciNet  Google Scholar 

  30. Tolstonogov, A.A.: Variational stability of optimal control problems involving subdifferential operators. Sb. Math. 202, 583–619 (2011)

    Article  MathSciNet  Google Scholar 

  31. Wang, J.R., Ibrahim, A.G., O’Regan, D.: Topological structure of the solution set for fractional non-instantaneous impulsive evolution inclusions. J. Fixed Point Theory Appl. 20(2), 59 (2018)

    Article  MathSciNet  Google Scholar 

  32. Wang, J.R., Zhang, Y.R.: Ulam–Hyers–Mittag–Leffler stability of fractional-order delay differential equations. Optimization 63(8), 1181–1190 (2014)

    Article  MathSciNet  Google Scholar 

  33. Yang, M., Wang, Q.R.: Approximate controllability of Hilfer fractional differential inclusions with nonlocal conditions. Math. Methods Appl. Sci. 40, 1126–1138 (2017)

    Article  MathSciNet  Google Scholar 

  34. Yakar, C., Arslan, M.: Quasilinearization method for causal terminal value problems involving Riemann–Liouville fractional derivatives. Electron. J. Differ. Equ. 2019(11), 1–11 (2019)

    MathSciNet  MATH  Google Scholar 

  35. Ye, H.P., Gao, J.M., Ding, Y.S.: A generalized Gronwall inequality and its application to a fractional differential equation. J. Math. Anal. Appl. 328, 1075–1081 (2007)

    Article  MathSciNet  Google Scholar 

  36. Zhou, Y.: Attractivity for fractional differential equations in Banach space. Appl. Math. Lett. 75, 1–6 (2018)

    Article  MathSciNet  Google Scholar 

  37. Zhou, Y., Jiao, F.: Existence of mild solutions for fractional neutral evolution equations. Comput. Math. Appl. 59, 1063–1077 (2010)

    Article  MathSciNet  Google Scholar 

  38. Zhu, Q.J.: On the solution set of differential inclusions in Banach space. J. Diff. Equat. 93, 213–237 (1991)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the editor and the referees for their valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhouchao Wei.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported by the National Natural Science Foundation of China (11772306,11961014), Foundation of Guilin University of Technology (GUTQDJJ2017062), Guangxi Natural Science Foundation (2018GXNSFAA281021, 2018GXNSFBA281020), Guangxi Science and Technology Base Foundation(AD20159017), and the Fundamental Research Funds for the central Universities, China University of Geosciences (Wuhan) (CUGGC05)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Y., Zhang, Q., Chen, A. et al. Sensitivity Analysis of Optimal Control Problems Governed by Nonlinear Hilfer Fractional Evolution Inclusions. Appl Math Optim 84, 3045–3082 (2021). https://doi.org/10.1007/s00245-020-09739-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00245-020-09739-3

Keywords

Mathematics Subject Classification

Navigation