Skip to main content
Log in

An Enhanced Baillon–Haddad Theorem for Convex Functions Defined on Convex Sets

  • Published:
Applied Mathematics & Optimization Submit manuscript

Abstract

The Baillon–Haddad theorem establishes that the gradient of a convex and continuously differentiable function defined in a Hilbert space is \(\beta \)-Lipschitz if and only if it is \(1/\beta \)-cocoercive. In this paper, we extend this theorem to Gâteaux differentiable and lower semicontinuous convex functions defined on an open convex set of a Hilbert space. Finally, we give a characterization of \(C^{1,+}\) convex functions in terms of local cocoercivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Abbas, B., Attouch, H.: Dynamical systems and forward-backward algorithms associated with the sum of a convex subdifferential and a monotone cocoercive operator. Optimization 64(10), 2223–2252 (2015)

    Article  MathSciNet  Google Scholar 

  2. Attouch, H., Briceño, A.L., Combettes, P.-L.: A parallel splitting method for coupled monotone inclusions. SIAM J. Control Optim. 48(5), 3246–3270 (2010)

    Article  MathSciNet  Google Scholar 

  3. Baillon, J.-B., Haddad, G.: Quelques propriétés des opérateurs angle-bornés et $n$-cycliquement monotones. Isr. J. Math. 26(2), 137–150 (1977)

    Article  Google Scholar 

  4. Bauschke, H.-H., Combettes, P.-L.: The Baillon-Haddad theorem revisited. J. Convex Anal. 17(3–4), 781–787 (2010)

    MathSciNet  MATH  Google Scholar 

  5. Bauschke, H.-H., Combettes, P.-L.: Convex analysis and monotone operator theory in Hilbert spaces, 2nd edn. CMS Books Math./Ouvrages Math. SMC, Springer, Cham (2017)

    Book  Google Scholar 

  6. Bauschke, H.-H., Bolte, J., Teboulle, M.: A descent lemma beyond Lipschitz gradient continuity: first-order methods revisited and applications. Math. Oper. Res. 42(2), 330–348 (2017)

    Article  MathSciNet  Google Scholar 

  7. Borwein, J., Vanderwerff, J.: Convex Functions: Constructions, Characterizations and Counterexamples, Volume 109 of Encyclopedia Mathematical Applications. Cambridge University Press, Cambridge (2010)

    Book  Google Scholar 

  8. Boţ, R.I., Csetnek, E.R.: A dynamical system associated with the fixed points set of a nonexpansive operator. J. Dyn. Differ. Equ. 29(1), 155–168 (2017)

    Article  MathSciNet  Google Scholar 

  9. Byrne, C.: On a generalized Baillon-Haddad theorem for convex functions on Hilbert space. J. Convex Anal. 22(4), 963–967 (2015)

    MathSciNet  MATH  Google Scholar 

  10. Chen, G., Teboulle, M.: Convergence analysis of a proximal-like minimization algorithm using bregman functions. SIAM J. Optim. 3(3), 538–543 (1993)

    Article  MathSciNet  Google Scholar 

  11. Combettes, P.-L.: Solving monotone inclusions via compositions of nonexpansive averaged operators. Optimization 53(5–6), 475–504 (2004)

    Article  MathSciNet  Google Scholar 

  12. Contreras, A., Peypouquet, J.: Asymptotic equivalence of evolution equations governed by cocoercive operators and their forward discretizations. J. Optim. Theory Appl. (2018)

  13. Hiriart-Urruty, J.-B., Strodiot, J.-J., Nguyen, V.H.: Generalized Hessian matrix and second-order optimality conditions for problems with $C^{1,1}$ data. Appl. Math. Optim. 11(1), 43–56 (1984)

    Article  MathSciNet  Google Scholar 

  14. Mordukhovich, B.S.: Variational analysis and generalized differentiation. I. Volume 330 of Grundlehren Math. Wiss. Springer, Berlin, 2006. Corrected, 2nd printing, (2013)

  15. Rockafellar, R.-T., Wets, R.: Variational Analysis, Volume 317 of Grundlehren Math. Wiss. Springer, Berlin (1998). Corrected 3rd printing 2009

    Google Scholar 

  16. Tseng, P.: Applications of a splitting algorithm to decomposition in convex programming and variational inequalities. SIAM J. Control Optim. 29(1), 119–138 (1991)

    Article  MathSciNet  Google Scholar 

  17. Zhu, D.L., Marcotte, P.: Co-coercivity and its role in the convergence of iterative schemes for solving variational inequalities. SIAM J. Optim. 6(3), 714–726 (1996)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the referees for providing several helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emilio Vilches.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

E. Vilches was partially funded by CONICYT Chile under grant Fondecyt de Iniciación 11180098, P. Pérez-Aros was partially supported by CONICYT Chile under grant Fondecyt regular 1190110.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pérez-Aros, P., Vilches, E. An Enhanced Baillon–Haddad Theorem for Convex Functions Defined on Convex Sets. Appl Math Optim 83, 2241–2252 (2021). https://doi.org/10.1007/s00245-019-09626-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00245-019-09626-6

Keywords

Mathematics Subject Classification

Navigation