Skip to main content
Log in

The Attractors of Camassa–Holm Equation in Unbounded Domains

  • Published:
Applied Mathematics & Optimization Submit manuscript

Abstract

In this paper, we deal with the existence of global mild solutions and asymptotic behavior to the viscous Camassa–Holm equation in the locally uniform spaces. First we establish the global well-posedness for the Cauchy problem of viscous Camassa–Holm equation in \({\mathbb {R}}^1\) for any initial data \(u_0\in {\dot{H}}^1_U({\mathbb {R}}^1).\) Then we study the long time dynamical behavior of non-autonomous viscous Camassa–Holm equation on \({\mathbb {R}}^1\) with a new class of external forces and show the existence of \((H^1_U({\mathbb {R}}^1),H^1_\phi ({\mathbb {R}}^1))\)-uniform(w.r.t. \(g\in \mathcal {H}_{L^2_U({\mathbb {R}}^1)}(g_0)\)) attractor \(\mathcal {A}_{\mathcal {H}_{L^2_U({\mathbb {R}}^1)}(g_0)}\) with locally uniform external forces being translation uniform bounded but not translation compact in \(L_b^2({\mathbb {R}};L^2_U({\mathbb {R}}^1))\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amann, H.: Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problems. In: Function Spaces, Differential Operators and Nonlinear Analysis. Teubner-Texte Math., vol. 133. Teubner, Stuttgart, pp. 9–126 (1993)

  2. Arrieta, J., Cholewa, J., Dlotko, T., Rodriguez-Bernal, A.: Linear parabolic equations in locally uniform spaces. Math. Models Methods Appl. Sci. 14, 253–293 (2004)

    Article  MathSciNet  Google Scholar 

  3. Arrieta, J., Cholewa, J., Dlotko, T., Rodriguez-Bernal, A.: Asymptotic behavior and attractors for reaction diffusion equations in unbounded domain. Nonlinear Anal. 56, 515–554 (2004)

    Article  MathSciNet  Google Scholar 

  4. Arrieta, J., Moya, N., Rodriguez-Bernal, A.: Asymptotic behavior of reaction diffusion equations in weighted Sobolev spaces, Submitted (2009)

  5. Babin, A., Vishik, M.: Attractors of partial differential evolution equations in an unbounded domain. Proc. R. Soc. Edinb. Sect. A 116, 221–243 (1990)

    Article  MathSciNet  Google Scholar 

  6. Bortolan, M.C., Carvalho, A.N., Langa, J.A.: Structure of attractors for skew product semiflows. J. Differ. Equ. 257(2), 490–522 (2014)

    Article  MathSciNet  Google Scholar 

  7. Bressan, A., Constantin, A.: Global conservative solutions of the Camassa–Holm equation. Arch. Ration. Mech. Anal. 183(2), 215–239 (2007)

    Article  MathSciNet  Google Scholar 

  8. Camassa, R., Holm, L.: An integrable shallow-water equation with peaked solitons. Phys. Rev. Lett. 71, 1661–1664 (1993)

    Article  MathSciNet  Google Scholar 

  9. Carvalho, A.N., Dlotko, T.: Partly dissipative systems in locally uniform spaces. Colloq. Math. 100, 221–242 (2004)

    Article  MathSciNet  Google Scholar 

  10. Carvalho, A.N., Langa, J.A., Robinson, J.C.: Attractors for Infinite-dimensional Non-autonomous Dynamical Systems. Applied Mathematical Sciences, vol. 182. Springer, Berlin (2012)

    MATH  Google Scholar 

  11. Chepyzhov, V., Vishik, M.: Attractors for Equations of Mathematical Physics, vol. 49. American Mathematical Society, New York (2002)

    MATH  Google Scholar 

  12. Chepyzhov, V., Vishik, M.: Attractors of nonautonomous dynamical systems and their dimension. J. Math. Pures Appl. 73, 279–333 (1994)

    MathSciNet  MATH  Google Scholar 

  13. Cholewa, J.W., Dlotko, T.: Cauchy problems in weighted Lebesgue spaces. Czechoslov. Math. J. 54, 991–1013 (2004)

    Article  MathSciNet  Google Scholar 

  14. Cholewa, J.W., Dlotko, T.: Global Attractors in Abstract Parabolic Problems. Cambridge University Press, Cambridge (2000)

    Book  Google Scholar 

  15. Constantin, A., Escher, J.: Global existence and blow-up for a shallow water equation. Ann. Sc. Norm. Sup. Pisa 26, 303–328 (1998)

    MathSciNet  MATH  Google Scholar 

  16. Danchin, R.: A note on well-posedness for Camassa–Holm equation. J. Differ. Equ. 192(2), 429–444 (2003)

    Article  MathSciNet  Google Scholar 

  17. Escher, J., Yin, Z.: Initial boundary value problems of the Camassa–Holm equation. Commun. Partial Differ. Equ. 33, 377–395 (2008)

    Article  MathSciNet  Google Scholar 

  18. Fokas, A.S., Fuchssteiner, B.: Symplectic structures, their Bäcklund transformation and hereditary symmetries. Physica D. 4, 47–66 (1981)

    Article  MathSciNet  Google Scholar 

  19. Gui, G., Liu, Y., Olver, J., Qu, C.: Wave-breaking and Peakons for a modified Camassa–Holm equation. Commun. Math. Phys. 319, 731–759 (2013)

    Article  MathSciNet  Google Scholar 

  20. Hale, J.: Asymptotic Behavior of Dissipative Systems. Amer. Math. Soc, Providence, RI (1988)

    MATH  Google Scholar 

  21. Haraux, A.: Systemes Dynamiques Dissipatifs et Applications. Masson, Paris (1991)

    MATH  Google Scholar 

  22. Henry, D.: Geometric Theory of Semilinear Parabolic Equations. Lecture Notes in Mathematics, vol. 840. Springer, Berlin (1981)

  23. Kato, T.: The Cauchy problem for quasi-linear symmetric hyperbolic systems. Arch. Ration. Mech. Anal. 58, 181–205 (1975)

    Article  MathSciNet  Google Scholar 

  24. Kouranbaeva, : The Camassa–Holm equation as geodesic flow on the diffeomorphism group. J. Math. Phys. 40, 857–868 (1999)

    Article  MathSciNet  Google Scholar 

  25. Lu, S., Wu, H., Zhong, C.: Attractors for nonautonomous 2D Navier–Stokes equations with normal external forces. Discret. Contin. Dyn. Syst. 13, 701–719 (2005)

    Article  MathSciNet  Google Scholar 

  26. McKean, H.P.: Breakdown of the Camassa–Holm equation. Commun. Pure Appl. Math. 57(3), 416–418 (2004)

    Article  MathSciNet  Google Scholar 

  27. Mielke, A., Schneider, G.: Attractors for modulation equations on unbounded domainsexistence and comparison. Nonlinearity 8(5), 743–768 (1995)

    Article  MathSciNet  Google Scholar 

  28. Moise, I., Rosa, R., Wang, X.: Attractors for noncompact nonautonomous systems via energy equations. Discret. Cont. Dyn. Syst. 10(1), 473–496 (2004)

    MathSciNet  MATH  Google Scholar 

  29. Molinet, Luc: On well-posedness results for Camassa–Holm equation on the line: a survey. J. Nonlinear Math. Phys. 11(4), 521–533 (2004)

    Article  MathSciNet  Google Scholar 

  30. Stanislavova, M., Stefanov, A.: On global finite energy solutions of the Camassa–Holm equation. J. Fourier Anal. Appl. 11(5), 511–531 (2005)

    Article  MathSciNet  Google Scholar 

  31. Stanislavova, M., Stefanov, A.: Attractors for the viscous Camassa–Holm equation. Discret. Contin. Dyn. Syst. Ser. A 18(1), 159–186 (2007)

    Article  MathSciNet  Google Scholar 

  32. Xin, Z., Zhang, P.: On the weak solutions to a shallow water equation. Commun. Pure Appl. Math. 53(11), 1411–1433 (2000)

    Article  MathSciNet  Google Scholar 

  33. Xin, Z., Zhang, P.: On the uniqueness and large time behavior of the weak solutions to a shallow water equation. Commun. Partial Differ. Equ. 27(9–10), 1815–1844 (2002)

    Article  MathSciNet  Google Scholar 

  34. Yang, M., Sun, C.: Dynamics of strongly damped wave equations in locally uniform spaces: attractors and asymptotic regularity. Trans. Am. Math. Soc. 361, 1069–1101 (2009)

    Article  MathSciNet  Google Scholar 

  35. Yin, Z.: Well-posedness, global solutions and blowup phenomena for a nonlinearly dispersive wave equation. J. Evol. Equ. 4, 391–419 (2004)

    Article  MathSciNet  Google Scholar 

  36. Yin, Z.: On the blow-up scenario for the generalized Camassa–Holm equation. Commun. Partial Differ. Equ. 29, 867–877 (2004)

    Article  MathSciNet  Google Scholar 

  37. Yue, G.C., Zhong, C.K.: Dynamics of non-autonomous reaction-diffusion equations in locally uniform spaces. Topol. Methods Nonlinear Anal. 46, 935–965 (2015)

    MathSciNet  MATH  Google Scholar 

  38. Yue, G.C., Zhong, C.K.: Global attractors for the Gray–Scott equations in locally uniform spaces. Discret. Contin. Dyn. Syst. B 21, 337–356 (2016)

    MathSciNet  MATH  Google Scholar 

  39. Yue, G.C.: Attractors for non-autonomous reaction-diffusion equations with fractional diffusion in locally uniform spaces. Discret. Contin. Dyn. Syst. B 22, 1645–1671 (2017)

    MathSciNet  MATH  Google Scholar 

  40. Zelik, S.: The attractor for a nonlinear hyperbolic equation in the unbounded domain. Discret. Contin. Dyn. Syst. 7, 593–641 (2001)

    Article  MathSciNet  Google Scholar 

  41. Zhong, C.K., Yang, M.H., Sun, C.Y.: The existence of global attractors for the norm-to-weak continuous semigroup and application to the nonlinear reaction–diffusion equations. J. Differ. Equ. 223, 367–399 (2006)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author would like to thank the anonymous referee for the careful reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaocheng Yue.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The author is supported by NSF of China under Grant 11501289.

Appendix: Some Properties of Uniform Normal External Forces

Appendix: Some Properties of Uniform Normal External Forces

In this section we present some result concerning the locally uniform spaces \(L_{loc}^p({\mathbb {R}};L^q_U({\mathbb {R}}^N))\) with \(1<p\) and \(1<q<N.\) Recall that a function \(\sigma (s)\in L_{loc}^p({\mathbb {R}};L^q_U({\mathbb {R}}^N))\) is said to be translation compact(tr.c.) if the closure of \(\{\sigma (s+h)|h\in {\mathbb {R}}\}\) is compact in \(L_{loc}^p({\mathbb {R}};L^q_U({\mathbb {R}}^N)).\) The set of all tr.c. functions in \(L_{loc}^p({\mathbb {R}};L^q_U({\mathbb {R}}^N))\) is denoted by \(L_c^p({\mathbb {R}};L^q_U({\mathbb {R}}^N)).\)

We first recall two propositions [11] that gives the compactness criterion in \(L^p(t_1,t_2;L^q_U({\mathbb {R}}^N)).\)

Proposition A.1

A set \(\Sigma \subset L_{loc}^p({\mathbb {R}};L^q_U({\mathbb {R}}^N))\) is precompact in \(L_{loc}^p({\mathbb {R}};L^q_U({\mathbb {R}}^N))\) if and only if the set \(\Sigma |_\Omega \) is precompact in \(L^p_{loc}({\mathbb {R}};L^q(\Omega ))\) for every bounded subset \(\Omega \subset {\mathbb {R}}^N.\) Here \(\Sigma |_{\Omega }\) denotes the restriction of the set \(\Sigma \) to the subset \(\Omega .\)

According to the definition of translation compact function in \(L_{loc}^p({\mathbb {R}};L^q_U({\mathbb {R}}^N))\) and this proposition, a function \(g\in L_{loc}^p({\mathbb {R}};L^q_U({\mathbb {R}}^N))\) is tr.c. if and only if

$$\begin{aligned} \{T(h)g_0(t)|h\in {\mathbb {R}},\;t\in [0,1]\}\quad \text {is precompact in}\;\; L^p([0,1];L^q(\Omega )). \end{aligned}$$

The following proposition gives a compactness criterion in \(L_{loc}^p({\mathbb {R}};L^q_U({\mathbb {R}}^N)),\) whose proof is essentially given in Proposition 3.2 of [11].

Proposition A.2

Let \(\Omega \subset {\mathbb {R}}^N\) be a bounded domain. Then a function \(\psi (s)\) is tr.c. in \(L_{loc}^p({\mathbb {R}};L^q(\Omega ))\) if and only if

  1. (i)

    for any fixed \(h\in {\mathbb {R}}\) the set \(\big \{\int _t^{t+h}\psi (s)ds|t\in {\mathbb {R}}\big \}\) is precompact in \(L^q(\Omega );\)

  2. (ii)

    there exists a positive function \(\xi (s)\) with \(\xi (s)\rightarrow 0^+\) as \(s\rightarrow 0^+\) such that

    $$\begin{aligned} \int _t^{t+1} \Vert \psi (s)-\psi (s+l)\Vert ^p_{L^q(\Omega )}ds\le \xi (|l|)\quad \text {for all}\;\;t\in {\mathbb {R}}. \end{aligned}$$
    (A.1)

The following relationship between tr.c. function space \(L_c^p({\mathbb {R}};L^q_U({\mathbb {R}}^N)),\) uniform normal function space \(L_{un}^p({\mathbb {R}};L^q_U({\mathbb {R}}^N))\) and \(L_b^p({\mathbb {R}};L^q_U({\mathbb {R}}^N))\) has been essentially established for the bounded domain of \({\mathbb {R}}^N\) in [25]. According to Propositions A.1A.2 and the definition of topology of these spaces, we can prove the following conclusion by using the method of [25]. Hence, we omit details here.

Theorem A.3

Let \(p,q\ge 1,\) then

  1. (i)

    \(L_c^p({\mathbb {R}};L^q_U({\mathbb {R}}^N))\) is a closed subspace of \(L_b^p({\mathbb {R}};L^q_U({\mathbb {R}}^N));\)

  2. (ii)

    \(L_c^p({\mathbb {R}};L^q_U({\mathbb {R}}^N))\subset L_{un}^p({\mathbb {R}};L^q_U({\mathbb {R}}^N));\)

  3. (iii)

    \(L_{un}^p({\mathbb {R}};L^q_U({\mathbb {R}}^N))\) is a closed subspace of \(L_b^p({\mathbb {R}};L^q_U({\mathbb {R}}^N)).\)

In particular, if the external force g(xt) is given by \(g(x,t)=m(t)n(x),\) \(n(x)\in L^q_U({\mathbb {R}}^N),\) and let \(m(t)\in L^p_{loc}({\mathbb {R}})\) be the uniform normal, i.e., \(\sup \limits _{t\in {\mathbb {R}}}\int _t^{t+\eta }\Vert m(s)\Vert ^pds\le \varepsilon ,\) then

$$\begin{aligned} \sup \limits _{t\in {\mathbb {R}}}\int _t^{t+\eta }\Vert g(s)\Vert _{L^q_U({\mathbb {R}}^N)}^pds&= \sup \limits _{t\in {\mathbb {R}}}\int _t^{t+\eta }\Vert m(t)n(x)\Vert _{L^q_U({\mathbb {R}}^N)}^pds\\&\le \Vert n(x)\Vert _{L^q_U({\mathbb {R}}^N)}^p\sup \limits _{t\in {\mathbb {R}}}\int _t^{t+\eta }|m(s)|^pds\\&\le \varepsilon \Vert n(x)\Vert _{L^q_U({\mathbb {R}}^N)}^p. \end{aligned}$$

Now, we will give some examples to explain the inclusion relationship of these spaces given by Theorem A.3.

Example A.4

For \(k_1,k_2=1,2,\ldots ,\) we take

$$\begin{aligned} n(x)= {\left\{ \begin{array}{ll} k_1,\quad |x|\in \left[ k_1,k_1+\frac{1}{k_1^q}\right] ,\\ 0,\quad \text {otherwise}, \end{array}\right. } \end{aligned}$$

and

$$\begin{aligned} m(s)= {\left\{ \begin{array}{ll} k_2^{\frac{1}{p}},\quad s\in \left[ k_2,k_2+\frac{1}{k_2}\right] ,\\ 0,\quad \text {otherwise}, \end{array}\right. } \end{aligned}$$

it follows that

$$\begin{aligned} \Vert g(x,s)\Vert ^p_{L_b^p({\mathbb {R}};L^q_U({\mathbb {R}}^N))}&=\Vert m(s)n(x)\Vert ^p_{L_b^p({\mathbb {R}};L^q_U({\mathbb {R}}^N))}\\&= \sup \limits _{t\in {\mathbb {R}}}\int _t^{t+1}\Vert m(s)n(x)\Vert _{L^q_U({\mathbb {R}}^N))}^pds\le C. \end{aligned}$$

On the other hand, for any \(\eta >0\) there exist \(k_2\) such that \(\frac{1}{k_2}\le \eta ,\) set \(t=k_2,\) then

$$\begin{aligned} \sup \limits _{t\in {\mathbb {R}}}\int _t^{t+\eta }\Vert m(s)n(x)\Vert _{L^q_U({\mathbb {R}}^N))}^pds\ge \int _{k_2}^{k_2+\frac{1}{k_2}}\Vert m(s)\Vert ^pds=1, \end{aligned}$$

which implies g(xt) belonging to \(L_b^p({\mathbb {R}};L^q_U({\mathbb {R}}^N))\) but not \(L_{un}^p({\mathbb {R}};L^q_U({\mathbb {R}}^N)).\)

Example A.5

For \(k_1,k_2=1,2,\ldots ,\) we take

$$\begin{aligned} n(x)= {\left\{ \begin{array}{ll} k_1,\quad |x|\in \left[ k_1,k_1+\frac{1}{k_1^q}\right] ,\\ 0,\quad \text {otherwise}, \end{array}\right. } \end{aligned}$$

and

$$\begin{aligned} m(s)= {\left\{ \begin{array}{ll} k_2^{\frac{1}{p}},\quad s\in \left[ k_2+\frac{i}{k_2},k_2+\frac{i}{k_2}+\frac{1}{k_2^p}\right] ,\\ i=0,1,\ldots ,k_2^{p-1}-1,\\ 0,\quad \;\text {otherwise}, \end{array}\right. } \end{aligned}$$

it yields

$$\begin{aligned}&\int _0^{\eta }\Vert m(s)n(x)\Vert _{L^q_U({\mathbb {R}}^N))}^pds\\&\quad \le {\left\{ \begin{array}{ll} (i+1)\frac{1}{k_2^p}(k_2^{\frac{1}{p}})^p\le \frac{2i}{k_2^{p-1}}\le 2\eta ^{p-1}, &{}\text {if}\;\frac{i}{k_2}\le \eta<\frac{i+1}{k_2},i\ge 1,\\ \frac{1}{k_2^p}(k_2^{\frac{1}{p}})^p\le \frac{1}{k_2^{p-1}}\le \eta ^{\frac{p-1}{p}}, &{}\text {if}\;\frac{1}{k_2^p}\le \eta<\frac{1}{k_2},\\ \eta (k_2^{\frac{1}{p}})^p\le \eta \left( \frac{1}{\eta }\right) ^{\frac{1}{p}}=\eta ^{\frac{p-1}{p}}, &{}\text {if}\;0\le \eta <\frac{1}{k_2^p}. \end{array}\right. } \end{aligned}$$

Thus, for any \(0<\varepsilon <\frac{1}{2^{\frac{1}{p-1}}},\) let \(\eta =\varepsilon ^{\frac{p}{p-1}},\) and we have

$$\begin{aligned} \sup \limits _{t\in {\mathbb {R}}}\int _t^{t+\eta }\Vert m(s)n(x)\Vert _{L^q_U({\mathbb {R}}^N))}^pds&= \sup \limits _{t\in {\mathbb {R}}}\int _0^{\eta }\Vert m(t+s)n(x)\Vert _{L^q_U({\mathbb {R}}^N))}^pds\\ {}&= \sup \limits _{k_2\in N}\int _0^{\eta }\Vert m(s+k_2)n(x)\Vert _{L^q_U({\mathbb {R}}^N))}^pds\le \varepsilon . \end{aligned}$$

However, it is easy to see that for any \(\frac{1}{k_2^p}\le l<\frac{1}{k_2}-\frac{1}{k_2^p}\) satisfying \(k_2>2^{\frac{1}{p-1}},\)

$$\begin{aligned} \int _0^1\Vert m(s+k_2)n(x)-m(s+k_2-l)n(x)\Vert _{L^q_U({\mathbb {R}}^N))}^pds=\int _0^1k_2 \frac{1}{k_2^p}(2k_2^{p-1})2ds=4, \end{aligned}$$

which implies from Proposition A.2 that \(g(x,t)=m(t)n(x)\) dose not belong to \(L_c^p({\mathbb {R}};L^q_U({\mathbb {R}}^N))\) but in \(L_{un}^p({\mathbb {R}};L^q_U({\mathbb {R}}^N))\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yue, G. The Attractors of Camassa–Holm Equation in Unbounded Domains. Appl Math Optim 83, 2211–2240 (2021). https://doi.org/10.1007/s00245-019-09624-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00245-019-09624-8

Keywords

Mathematics Subject Classification

Navigation