Skip to main content
Log in

A Du Bois-Reymond Convex Inclusion for Nonautonomous Problems of the Calculus of Variations and Regularity of Minimizers

  • Published:
Applied Mathematics & Optimization Submit manuscript

Abstract

We consider a local minimizer, in the sense of the \(W^{1,m}\) norm (\(m\ge 1\)), of the classical problem of the calculus of variations

$$\begin{aligned} {\left\{ \begin{array}{ll} {\mathrm{Minimize}}\quad &{}\displaystyle I(x):=\int _a^b\varLambda (t,x(t), x'(t))\,dt+\varPsi (x(a), x(b))\\ \text {subject to:} &{}x\in W^{1,m}([a,b];\mathbb {R}^n),\\ &{}x'(t)\in C\,\text { a.e., } \,x(t)\in \varSigma \quad \forall t\in [a,b].\\ \end{array}\right. } \end{aligned}$$
(P)

where \(\varLambda :[a,b]\times \mathbb {R}^n\times \mathbb {R}^n\rightarrow \mathbb {R}\cup \{+\infty \}\) is just Borel measurable, C is a cone, \(\varSigma \) is a nonempty subset of \(\mathbb {R}^n\) and \(\varPsi \) is an arbitrary possibly extended valued function. When \(\varLambda \) is real valued, we merely assume a local Lipschitz condition on \(\varLambda \) with respect to t, allowing \(\varLambda (t,x,\xi )\) to be discontinuous and nonconvex in x or \(\xi \). In the case of an extended valued Lagrangian, we impose the lower semicontinuity of \(\varLambda (\cdot ,x,\cdot )\), and a condition on the effective domain of \(\varLambda (t,x,\cdot )\). We use a recent variational Weierstrass type inequality to show that the minimizers satisfy a relaxation result and an Erdmann – Du Bois-Reymond convex inclusion which, remarkably, holds whenever \(\varLambda (x,\xi )\) is autonomous and just Borel. Under a growth condition, weaker than superlinearity, we infer the Lipschitz continuity of minimizers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ambrosio, L., Ascenzi, O., Buttazzo, G.: Lipschitz regularity for minimizers of integral functionals with highly discontinuous integrands. J. Math. Anal. Appl. 142, 301–316 (1989)

    Article  MathSciNet  Google Scholar 

  2. Ball, J.M., Mizel, V.J.: One-dimensional variational problems whose minimizers do not satisfy the Euler-Lagrange equation. Arch. Ration. Mech. Anal. 90, 325–388 (1985)

    Article  MathSciNet  Google Scholar 

  3. Bettiol, P., Mariconda, C.: A new variational inequality in the Calculus of Variations and Lipschitz regularity of minimizers. J. Differ. Equ. (2019). https://doi.org/10.1016/j.jde.2019.09.011

    Article  MATH  Google Scholar 

  4. Bettiol, P., Mariconda, C.: On a new necessary condition in the Calculus of Variations for highly discontinuous Lagrangians in the state and velocity. Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 30, 649–663 (2019)

    Article  MathSciNet  Google Scholar 

  5. Buttazzo, G., Giaquinta, M., Hildebrandt, S.: One-dimensional variational problems. An introduction., Oxford Lecture Series in Mathematics and its Applications, vol. 15. The Clarendon Press, Oxford University Press, New York (1998)

  6. Cellina, A.: The classical problem of the calculus of variations in the autonomous case: relaxation and Lipschitzianity of solutions. Trans. Am. Math. Soc. 356, 415–426 (2004). (electronic)

    Article  MathSciNet  Google Scholar 

  7. Cellina, A., Treu, G., Zagatti, S.: On the minimum problem for a class of non-coercive functionals. J. Differ. Equat. 127(1), 225–262 (1996). https://doi.org/10.1006/jdeq.1996.0069

    Article  MathSciNet  MATH  Google Scholar 

  8. Cesari, L.: Optimization–theory and applications, Applications of Mathematics (New York), vol. 17. Springer, New York (1983). Problems with ordinary differential equations

  9. Clarke, F.H.: An indirect method in the calculus of variations. Trans. Am. Math. Soc. 336, 655–673 (1993)

    Article  MathSciNet  Google Scholar 

  10. Clarke, F.H.: Functional Analysis, Calculus of Variations and Optimal Control, Graduate Texts in Mathematics, vol. 264. Springer, London (2013)

    Book  Google Scholar 

  11. Clarke, F.H., Vinter, R.B.: Regularity properties of solutions to the basic problem in the calculus of variations. Trans. Am. Math. Soc. 289, 73–98 (1985)

    Article  MathSciNet  Google Scholar 

  12. Cupini, G., Guidorzi, M., Marcelli, C.: Necessary conditions and non-existence results for autonomous nonconvex variational problems. J. Differ. Equat. 243, 329–348 (2007)

    Article  MathSciNet  Google Scholar 

  13. Dal Maso, G., Frankowska, H.: Autonomous integral functionals with discontinuous nonconvex integrands: Lipschitz regularity of minimizers, DuBois-Reymond necessary conditions, and Hamilton-Jacobi equations. Appl. Math. Optim. 48, 39–66 (2003)

    Article  MathSciNet  Google Scholar 

  14. Ferriero, A.: Relaxation and regularity in the calculus of variations. J. Differ. Equat. 249, 2548–2560 (2010)

    Article  MathSciNet  Google Scholar 

  15. Mariconda, C., Treu, G.: Lipschitz regularity of the minimizers of autonomous integral functionals with discontinuous non-convex integrands of slow growth. Calc. Var. Partial Differ. Equat. 29, 99–117 (2007)

    Article  MathSciNet  Google Scholar 

  16. Quincampoix, M., Zlateva, N.: On Lipschitz regularity of minimizers of a calculus of variations problem with non locally bounded Lagrangians. C. R. Math. Acad. Sci. Paris 343(1), 69–74 (2006)

    Article  MathSciNet  Google Scholar 

  17. Vinter, R.: Optimal Control. Modern Birkhäuser Classics. Birkhäuser Boston Inc., Boston (2000)

    Google Scholar 

Download references

Acknowledgements

We thank Richard Vinter for pointing out the lack of a regularity results for problems concerning nonautonomous Lagrangians with state constraints. C. M. wishes to thank the University of Brest and P. B. for the hospitality during the preparation of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlo Mariconda.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This research is partially supported by the Padua University Grant SID 2018 “Controllability, stabilizability and infimum gaps for control systems”, prot. BIRD 187147.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bettiol, P., Mariconda, C. A Du Bois-Reymond Convex Inclusion for Nonautonomous Problems of the Calculus of Variations and Regularity of Minimizers. Appl Math Optim 83, 2083–2107 (2021). https://doi.org/10.1007/s00245-019-09620-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00245-019-09620-y

Keywords

Mathematics Subject Classification

Navigation