Skip to main content
Log in

Existence Theory for a Time-Dependent Mean Field Games Model of Household Wealth

  • Published:
Applied Mathematics & Optimization Submit manuscript

Abstract

We study a nonlinear system of partial differential equations arising in macroeconomics which utilizes a mean field approximation. This system together with the corresponding data, subject to two moment constraints, is a model for debt and wealth across a large number of similar households, and was introduced in a recent paper of Achdou et al. (Philos Trans R Soc Lond Ser A 372(2028):20130397, 2014). We introduce a relaxation of their problem, generalizing one of the moment constraints; any solution of the original model is a solution of this relaxed problem. We prove existence and uniqueness of strong solutions to the relaxed problem, under the assumption that the time horizon is small. Since these solutions are unique and since solutions of the original problem are also solutions of the relaxed problem, we conclude that if the original problem does have solutions, then such solutions must be the solutions we prove to exist. Furthermore, for some data and for sufficiently small time horizons, we are able to show that solutions of the relaxed problem are in fact not solutions of the original problem. In this way we demonstrate nonexistence of solutions for the original problem in certain cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Achdou, Y., Buera, F.J., Lasry, J.-M., Lions, P.-L., Moll, B.: Partial differential equation models in macroeconomics. Philos. Trans. R. Soc. Lond. Ser. A 372(2028), 20130397 (2014)

    MathSciNet  MATH  Google Scholar 

  2. Achdou, Y., Han, J., Lasry, J.-M., Lions, P.-L., Moll, B.: Income and wealth distribution in macroeconomics: a continuous-time approach. NBER Working Paper Series (2017)

  3. Adams, R.A., Fournier, J.J.F.: Sobolev Spaces, Pure and Applied Mathematics, vol. 140, 2nd edn. Elsevier/Academic Press, Amsterdam (2003)

    Google Scholar 

  4. Aiyagari, S.R.: Uninsured idiosyncratic risk and aggregate saving. Q. J. Econ. 109(3), 659–684 (1994)

    Article  Google Scholar 

  5. Ambrose, D.M.: Well-posedness of vortex sheets with surface tension. SIAM J. Math. Anal. 35(1), 211–244 (2003). (electronic)

    Article  MathSciNet  Google Scholar 

  6. Ambrose, D.M.: Small strong solutions for time-dependent mean field games with local coupling. C. R. Acad. Sci. Paris 354, 589–594 (2016)

    Article  MathSciNet  Google Scholar 

  7. Ambrose, D.M.: Strong solutions for time-dependent mean field games with non-separable Hamiltonians. J. Math. Pures Appl. (2016)

  8. Ambrose, D.M.: Existence theory for non-separable mean field games in Sobolev spaces (2018). Preprint. arXiv:1807.02223. Submitted to Math. Ann

  9. Bewley, T.: Stationary monetary equilibrium with a continuum of independently fluctuating consumers. Contributions to mathematical economics in honor of Gérard Debreu, 79 (1986)

  10. Cardaliaguet, P., Graber, P.J., Porretta, A., Tonon, D.: Second order mean field games with degenerate diffusion and local coupling. NoDEA Nonlinear Differ. Equ. Appl. 22(5), 1287–1317 (2015)

    Article  MathSciNet  Google Scholar 

  11. Cirant, M., Gianni, R., Mannucci, P.: Short time existence for a general backward-forward parabolic system arising from mean-field games (2018). Preprint. arXiv:1806.08138

  12. Constantin, A., Escher, J.: Wave breaking for nonlinear nonlocal shallow water equations. Acta Math. 181(2), 229–243 (1998)

    Article  MathSciNet  Google Scholar 

  13. Feller, W.: On boundaries and lateral conditions for the Kolmogorov differential equations. Ann. Math. 2(65), 527–570 (1957)

    Article  MathSciNet  Google Scholar 

  14. Gomes, D.A., Pimentel, E.: Time-dependent mean-field games with logarithmic nonlinearities. SIAM J. Math. Anal. 47(5), 3798–3812 (2015)

    Article  MathSciNet  Google Scholar 

  15. Gomes, D.A., Pimental, E., Sánchez-Morgado, H.: Time-dependent mean-field games in the superquadratic case. arXiv:1311.6684v3 (2014)

  16. Gomes, D.A., Pimentel, E.A., Sánchez-Morgado, H.: Time-dependent mean-field games in the subquadratic case. Commun. Partial Differ. Equ. 40, 40–76 (2015)

    Article  MathSciNet  Google Scholar 

  17. Huang, M., Malhamé, R.P., Caines, P.E.: Large population stochastic dynamic games: closed-loop McKean-Vlasov systems and the Nash certainty equivalence principle. Commun. Inf. Syst. 6(3), 221–251 (2006)

    MathSciNet  MATH  Google Scholar 

  18. Huang, M., Caines, P.E., Malhamé, R.P.: Large-population cost-coupled LQG problems with nonuniform agents: individual-mass behavior and decentralized \(\epsilon \)-Nash equilibria. IEEE Trans. Autom. Control 52(9), 1560–1571 (2007)

    Article  MathSciNet  Google Scholar 

  19. Huggett, M.: The risk-free rate in heterogeneous-agent incomplete-insurance economies. J. Econ. Dyn. Control 17(5–6), 953–969 (1993)

    Article  Google Scholar 

  20. Lasry, J.-M., Lions, P.-L.: Jeux à champ moyen. I. Le cas stationnaire. C. R. Math. Acad. Sci. Paris 343(9), 619–625 (2006)

    Article  MathSciNet  Google Scholar 

  21. Lasry, J.-M., Lions, P.-L.: Jeux à champ moyen. II. Horizon fini et contrôle optimal. C. R. Math. Acad. Sci. Paris 343(10), 679–684 (2006)

    Article  MathSciNet  Google Scholar 

  22. Lasry, J.-M., Lions, P.-L.: Mean field games. Jpn. J. Math. 2(1), 229–260 (2007)

    Article  MathSciNet  Google Scholar 

  23. Majda, A.J., Bertozzi, A.L.: Vorticity and Incompressible Flow. Cambridge Texts in Applied Mathematics, vol. 27. Cambridge University Press, Cambridge (2002)

    Google Scholar 

  24. Miller, R.E.: Extension theorems for homogenization on lattice structures. Appl. Math. Lett. 5(6), 73–78 (1992)

    Article  MathSciNet  Google Scholar 

  25. Porretta, A.: On the planning problem for a class of mean field games. C. R. Math. Acad. Sci. Paris 351(11–12), 457–462 (2013)

    Article  MathSciNet  Google Scholar 

  26. Porretta, A.: On the planning problem for the mean field games system. Dyn. Games Appl. 4(2), 231–256 (2014)

    Article  MathSciNet  Google Scholar 

  27. Porretta, A.: Weak solutions to Fokker-Planck equations and mean field games. Arch. Ration. Mech. Anal. 216(1), 1–62 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author gratefully acknowledges support from the National Science Foundation through Grants DMS-1515849 and DMS-1907684. The author is also grateful to the anonymous referees for a number of helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David M. Ambrose.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ambrose, D.M. Existence Theory for a Time-Dependent Mean Field Games Model of Household Wealth. Appl Math Optim 83, 2051–2081 (2021). https://doi.org/10.1007/s00245-019-09619-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00245-019-09619-5

Keywords

Navigation