Skip to main content
Log in

Long-Time Behavior for a Class of Semi-linear Viscoelastic Kirchhoff Beams/Plates

  • Published:
Applied Mathematics & Optimization Submit manuscript

Abstract

This is a complementation work of the paper referred in Jorge Silva, Muñoz Rivera and Racke (Appl Math Optim 73:165–194, 2016) where the authors proposed a semi-linear viscoelastic Kirchhoff plate model. While in [28] it is presented a study on well-posedness and energy decay rates in a historyless memory context, here our main goal is to consider the problem in a past history framework and then analyze its long-time behavior through the corresponding autonomous dynamical system. More specifically, our results are concerned with the existence of finite dimensional attractors as well as their intrinsic properties from the dynamical systems viewpoint. In addition, we also present a physical justification of the model under consideration. Hence, our new achievements complement those established in [28] to the case of memory in a history space setting and extend the results in Jorge Silva and Ma (IMA J Appl Math 78:1130–1146, 2013, J Math Phys 54:021505, 2013) to the case of dissipation only given by the memory term.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andrade, D., Jorge Silva, M.A., Ma, T.F.: Exponential stability for a plate equation with \(p\)-Laplacian and memory terms. Math. Methods Appl. Sci. 35, 417–426 (2012)

    MathSciNet  MATH  Google Scholar 

  2. Ammar-Khodja, F., Benabdallah, A., Muñoz Rivera, J .E., Racke, R.: Energy decay for Timoshenko systems of memory type. J. Differ. Equ. 194(1), 82–115 (2003)

    MathSciNet  MATH  Google Scholar 

  3. Araújo, R.O., Ma, T.F., Qin, Y.: Long-time behavior of a quasilinear viscoelastic equation with past history. J. Differ. Equ. 254, 4066–4087 (2013)

    MathSciNet  MATH  Google Scholar 

  4. Babin, A.V., Vishik, M.I.: Attractors of Evolution Equations. Studies in Mathematics and Its Application, vol. 25. North-Holland, Amsterdam (1992)

    Google Scholar 

  5. Barbosa, A.R.A., Ma, T.F.: Long-time dynamics of an extensible plate equation with thermal memory. J. Math. Anal. Appl. 416, 143–165 (2014)

    MathSciNet  MATH  Google Scholar 

  6. Chueshov, I., Lasiecka, I.: Global attractors for Mindlin-Timoshenko plates and for their Kirchhoff limits. Milan J. Math. 74, 117–138 (2006)

    MathSciNet  MATH  Google Scholar 

  7. Chueshov, I., Lasiecka, I.: Existence, uniqueness of weak solutions and global attractors for a class of nonlinear 2D Kirchhoff-Boussinesq models. Discret. Contin. Dyn. Syst. 15, 777–809 (2006)

    MathSciNet  MATH  Google Scholar 

  8. Chueshov, I., Lasiecka, I.: Long-Time Behavior of Second Order Evolution Equations with Nonlinear Damping, vol. 195, p. 912. Memoirs of the American Mathematical Society, Providence (2008)

    MATH  Google Scholar 

  9. Chueshov, I., Lasiecka, I.: Von Karman Evolution Equations: Well-Posedness and Long-Time Dynamics. Springer Monographs in Mathematics. Springer, New York (2010)

    MATH  Google Scholar 

  10. Chueshov, I., Lasiecka, I.: On global attractors for 2D Kirchhoff-Boussinesq model with supercritical nonlinearity. Commun. Partial Differ. Equ. 36, 67–99 (2011)

    MathSciNet  MATH  Google Scholar 

  11. Conti, M., Geredeli, P.: Existence of smooth global attractors for nonlinear viscoelastic equation with memory. J. Evol. Equ. 15, 533–538 (2015)

    MathSciNet  MATH  Google Scholar 

  12. Drozdov, A.D., Kolmanovskii, V.B.: Stability in Viscoelasticity. North-Holland, Amsterdam (1994)

    MATH  Google Scholar 

  13. Eden, A., Foias, C., Nicolaenko, B., Temam, R.: Exponential Attractors for Dissipative Evolution Equations. RAM: Research in Applied Mathematics, vol. 37. Masson, Paris (1994)

    MATH  Google Scholar 

  14. Fatori, H., Jorge Silva, M.A., Ma, T.F., Yang, Z.: Long-time behavior of a class of thermoelastic plates with nonlinear strain. J. Differ. Equ. 259, 4831–4862 (2015)

    MathSciNet  MATH  Google Scholar 

  15. Feng, B.: Well-posedness and exponential stability for a plate equation with time-varying delay and past history. Z. Angew. Math. Phys. 68, 24 (2017)

    MathSciNet  MATH  Google Scholar 

  16. Feng, B.: Long-time dynamics of a plate equation with memory and time delay. Bull. Braz. Math. Soc. (2017). https://doi.org/10.1007/s00574-017-0060-x

  17. Giorgi, C., Naso, M.G.: Mathematical models of Reissner-Mindlin thermoviscoelastic plates. J. Therm. Stress. 29, 699–716 (2006)

    MathSciNet  Google Scholar 

  18. Giorgi, C., Vegni, F.: Uniform energy estimates for a semilinear evolution equation of the Mindlin-Timoshenko beam with memory. Math. Comput. Model. 39, 1005–1021 (2004)

    MathSciNet  MATH  Google Scholar 

  19. Giorgi, C., Vegni, F.: The longtime behavior of a nonlinear Reissner-Mindlin plate with exponentially decreasing memory kernels. J. Math. Anal. Appl. 326, 754–771 (2007)

    MathSciNet  MATH  Google Scholar 

  20. Giorgi, C., Marzocchi, A., Pata, V.: Asymptotic behavior of a semilinear problem in heat conduction with memory. Nonlinear Differ. Equ. Appl. NoDEA 5, 333–354 (1998)

    MathSciNet  MATH  Google Scholar 

  21. Giorgi, C., Grasseli, M., Pata, V.: Well-posedness and longtime behavior of the phase-field model with memory in a history space setting. Q. Appl. Math. 59, 701–736 (2001)

    MathSciNet  MATH  Google Scholar 

  22. Giorgi, C., Muñoz Rivera, J.E., Pata, V.: Global attractors for a semilinear hyperbolic equation in viscoelasticity. J. Math. Anal. Appl. 260, 83–99 (2001)

    MathSciNet  MATH  Google Scholar 

  23. Grasselli, M., Pata, V.: Uniform attractors of nonautonomous dynamical systems with memory. Prog. Nonlinear Differ. Equ. Appl. 50, 155–178 (2002)

    MathSciNet  MATH  Google Scholar 

  24. Hale, J.K.: Asymptotic Behavior of Dissipative Systems. Mathematical Surveys and Monographs, vol. 25. American Mathematical Society, Providence (1988)

    Google Scholar 

  25. Jorge Silva, M.A., Ma, T.F.: On a viscoelastic plate equation with history setting and perturbation of \(p\)-Laplacian type. IMA J. Appl. Math. 78, 1130–1146 (2013)

    MathSciNet  MATH  Google Scholar 

  26. Jorge Silva, M.A., Ma, T.F.: Long-time dynamics for a class of Kirchhoff models with memory. J. Math. Phys. 54, 021505 (2013)

    MathSciNet  MATH  Google Scholar 

  27. Jorge Silva, M.A., Narciso, V.: Attractors and their properties for a class of nonlocal extensible beams. Discret. Contin. Dyn. Syst. 35, 985–1008 (2015)

    MathSciNet  MATH  Google Scholar 

  28. Jorge Silva, M.A., Muñoz Rivera, J.E., Racke, R.: On a classes of nonlinear viscoelastic Kirchhoff plates: well-posedness and generay decay rates. Appl. Math. Optim. 73, 165–194 (2016)

    MathSciNet  MATH  Google Scholar 

  29. Lagnese, J.E.: Boundary Stabilization of Thin Plates. SIAM Studies in Applied Mathematics, vol. 10. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (1989)

    Google Scholar 

  30. Lagnese, J., Lions, J.-L.: Modelling, Analysis and Control of Thin Plates. Recherches en Mathématiques Appliquées, vol. 6. Masson, Paris (1988)

    MATH  Google Scholar 

  31. Ma, T.F., Pelicer, M.L.: Attractors for weakly damped beam equations with p-Laplacian. Discret. Contin. Dyn. Syst. Suppl. 15, 525–534 (2013)

    MathSciNet  MATH  Google Scholar 

  32. Marzocchi, A., Vuk, E.: Global attractor for damped semilinear elastic beam equations with memory. Z. Angew. Math. Phys. 54, 224–234 (2003)

    MathSciNet  MATH  Google Scholar 

  33. Narciso, V.: Long-time behavior of a nonlinear viscoelastic beam equation with past history. Math. Methods Appl. Sci. 38, 775–784 (2014)

    MathSciNet  MATH  Google Scholar 

  34. Potomkin, M.: Asymptotic behavior of thermoviscoelastic Berger plate. Commun. Pure Appl. Anal. 9, 161–192 (2010)

    MathSciNet  MATH  Google Scholar 

  35. Prüss, J.: Evolutionary Integral Equations and Applications. Monographs in Mathematics, vol. 87. Birkhäuser, Basel (1993)

    MATH  Google Scholar 

  36. Temam, R.: Infinite-Dimensional Dynamical Systems in Mechanics and Physics. Applied Mathematical Sciences, vol. 68. Springer, New York (1988)

    MATH  Google Scholar 

  37. Timoshenko, S.P.: On the correction for shear of the differential equation for transverse vibrations of prismatic bars. Philos. Mag. Ser. 6 41(245), 744–746 (1921)

    Google Scholar 

  38. Timoshenko, S.P.: Vibration Problems in Engineering. Van Nostrand, New York (1955)

    MATH  Google Scholar 

  39. Yang, Z.: Longtime behavior for a nonlinear wave equation arising in elasto-plastic flow. Math. Methods Appl. Sci. 32, 1082–1104 (2009)

    MathSciNet  MATH  Google Scholar 

  40. Yang, Z.: Global attractor and their Hausdorff dimensions for a class of Kirchhoff models. J. Math. Phys. 51, 032701 (2010)

    MathSciNet  MATH  Google Scholar 

  41. Yang, Z.: Finite-dimensional attractors for the Kirchhoff models. J. Math. Phys. 51, 092703 (2010)

    MathSciNet  MATH  Google Scholar 

  42. Yang, Z.: Finite-dimensional attractors for the Kirchhoff models with critical exponents. J. Math. Phys. 53, 032702 (2012)

    MathSciNet  MATH  Google Scholar 

  43. Yang, Z., Jin, B.: Global attractor for a class of Kirchhoff models. J. Math. Phys. 50, 032701 (2009)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Professors M. T. O. Pimenta for remarkable suggestions on elliptic problems and T.F. Ma for fruitful comments on the modeling of viscoelastic Kirchhoff problems.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Jorge Silva.

Additional information

B. Feng has been supported by the National Natural Science Foundation of China, Grant #11701465. M.A. Jorge Silva has been supported by the CNPq, Grant #441414/2014-1. A.H. Caixeta has been supported by the CAPES, Scholarship #1622327.

Appendix: Examples for F

Appendix: Examples for F

We finish this work by giving some examples of \(C^1\)-vector fields \(F:\mathbb {R}^n\rightarrow \mathbb {R}^n\) satisfying Assumption \(\mathbf {(A2)}\), or else, more generally that:

(a):

There exist positive constants \(k_1,\ldots ,k_n\) and \(q_1,\ldots ,q_n\) such that

$$\begin{aligned} |\nabla F_j(z)|\le k_j(1+|z|^{q_j}), \quad \forall \quad z\in \mathbb {R}^n, \quad \forall \quad j=1,\ldots ,n. \end{aligned}$$
(A.1)
(b):

\(F=\nabla f\) with \(f:\mathbb {R}^n\rightarrow \mathbb {R}\) so that

$$\begin{aligned} -a_0-a_1|z|^{2}\le f(z)\le F(z) z + a_2|z|^{2}, \quad \forall \; z\in \mathbb {R}^n, \end{aligned}$$
(A.2)

for some nonnegative constants \(a_0,a_1,a_3\ge 0.\)

We remark that it is important to consider at least one example such that (A.2) holds true with \(a_0>0\), by differing of the examples presented in [28, Sect. 4.2]. For the sake of completeness, we also provide an example where \(a_0=0.\) Also, since condition (A.1) is only technical, we shall omit comments on it in the next examples.

Example A.1

(Example 4.11 in [28]) Let us first consider

$$\begin{aligned} F(z)=|z|^{q}z, \ \ F=\nabla f \ \ \text{ with } \ \ f(z)=\frac{1}{q+2}|z|^{q+2}, \quad q\ge 0. \end{aligned}$$

Then, condition (A.2) is readily verified for any \(a_1,a_2\ge 0\) and \(a_0=0\). In this case, the vector field generates the p-Laplacian operator

$$\begin{aligned} \text{ div }F(\nabla u) \, = \, \text{ div }\left( |\nabla u|^{q} \nabla u\right) , \end{aligned}$$

with power \(p=2q+1\) that must satisfy condition (3.5).

Example A.2

(Example 4.12 in [28]) Let \(F=\nabla f\) be a conservative vector field, where

$$\begin{aligned} f(z)=\frac{\kappa }{q+2}|z|^{q+2}+\tau z, \end{aligned}$$

with \(q\ge 0,\)\(\kappa >0,\) and \(\tau =(\tau _1,\ldots ,\tau _n)\in \mathbb {R}^n.\) Thus, condition (A.2) is fulfilled with \(a_0= \frac{|\tau |^2}{2}\), \(a_1=\frac{1}{2}\), and any \(a_2\ge 0\).

Example A.3

Let us take \(F(z)=|z|^{q}z-\lambda |z|^{r}z, \, q>r>0, \lambda >0. \) Then, \(F=\nabla f\), where

$$\begin{aligned} f(z)=\frac{1}{q+2}|z|^{q+2}-\frac{\lambda }{r+2}|z|^{r+2}. \end{aligned}$$

Let us verify (A.2). We first check that there exist \(a_0, a_1 \ge 0\) such that

$$\begin{aligned} - a_0 - a_1 |z|^2 \le f(z), \quad \forall \, z \in \mathbb {R}^n. \end{aligned}$$

In fact, for a fixed \(a_1 \ge 0\), it is enough to choose \(a_0 \ge 0\) such that

$$\begin{aligned} a_0 \ge - \min _{t \ge 0}\left\{ \frac{t^{q+2}}{q+2} - \frac{\lambda t^{r+2}}{r+2} + a_1t^2 \right\} . \end{aligned}$$

To the second inequality in (A.2), it is enough to choose \(a_2 \ge 0\) such that

$$\begin{aligned} a_2 \ge \max _{t \ge 0}\left\{ \left( \frac{1}{q+2} - 1\right) t^q - \lambda \left( \frac{1}{r+2} - 1\right) t^r\right\} . \end{aligned}$$

Note that since \((\frac{1}{q+2} - 1)< 0\) and \(r < q\), such maximum there exists. In this case, the vector field generates the qr-Laplacian operator provided in the elliptic problem (5.9).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, B., Jorge Silva, M.A. & Caixeta, A.H. Long-Time Behavior for a Class of Semi-linear Viscoelastic Kirchhoff Beams/Plates. Appl Math Optim 82, 657–686 (2020). https://doi.org/10.1007/s00245-018-9544-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00245-018-9544-3

Keywords

Mathematics Subject Classification

Navigation