Skip to main content
Log in

Optimal Control and Zero-Sum Stochastic Differential Game Problems of Mean-Field Type

  • Published:
Applied Mathematics & Optimization Submit manuscript

Abstract

We establish existence of nearly-optimal controls, conditions for existence of an optimal control and a saddle-point for respectively a control problem and zero-sum differential game associated with payoff functionals of mean-field type, under dynamics driven by weak solutions of stochastic differential equations of mean-field type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bayraktar, E., Cosso, A., Huyên, P.: Randomized dynamic programming principle and Feynman–Kac representation for optimal control of McKean–Vlasov dynamics. Trans. Am. Math. Soc. 370(3), 2115–2160 (2018)

    Article  MathSciNet  Google Scholar 

  2. Beneš, V.E.: Existence of optimal stochastic control laws. SIAM J. Control 9, 446–472 (1971)

    Article  MathSciNet  Google Scholar 

  3. Bensoussan, A., Frehse, J., Yam, P.: Mean Field Games and Mean Field Type Control Theory, vol. 101. Springer, New York (2013)

    Book  Google Scholar 

  4. Buckdahn, R., Li, J.: Stochastic differential games and viscosity solutions of Hamilton–Bellman–Isaacs equations. SIAM J. Control 47(1), 444–475 (2008)

    Article  MathSciNet  Google Scholar 

  5. Carmona, R., Delarue, F.: Probabilistic Theory of Mean Field Games with Applications. Springer, New York (2018)

    Book  Google Scholar 

  6. Carmona, R., Lacker, D.: A probabilistic weak formulation of mean field games and applications. Ann. Appl. Probab. 25(3), 1189–1231 (2015)

    Article  MathSciNet  Google Scholar 

  7. Carmona, R., Delarue, F., Lachapelle, A.: Control of McKean–Vlasov dynamics versus mean field games. Math. Financ. Econ. 7(2), 131–166 (2013)

    Article  MathSciNet  Google Scholar 

  8. Elliott, R.J.: The existence of value in stochastic differential games. SIAM J. Control Optim. 14(1), 85–94 (1980)

    Article  MathSciNet  Google Scholar 

  9. Elliott, R.J., Davis, M.H.A.: Optimal play in a stochastic differential game. SIAM J. Control Optim. 19(4), 543–554 (1981)

    Article  MathSciNet  Google Scholar 

  10. Elliott, R.J., Kohlmann, M.: The variational principle and stochastic optimal control. Stochastics 3, 229–241 (1980)

    Article  MathSciNet  Google Scholar 

  11. El-Karoui, N.: Les aspects probabilistes du contrôle stochastique. Stoch. Process. Appl. 876, 73–238 (1981)

    MATH  Google Scholar 

  12. El-Karoui, N., Hamadène, S.: BSDEs and risk-sensitive control, zero-sum and nonzero-sum game problems of stochastic functional differential equations. Stoch. Process. Appl. 107(1), 145–169 (2003)

    Article  MathSciNet  Google Scholar 

  13. El-Karoui, N., Peng, S., Quenez, M.C.: Backward stochastic differential equations in finance. Math. Financ. 7(1), 1–71 (1997)

    Article  MathSciNet  Google Scholar 

  14. Ekeland, I.: On the variational principle. J. Math. Anal. Appl. 47, 324–353 (1974)

    Article  MathSciNet  Google Scholar 

  15. Fleming, W.E., Souganidis, P.E.: On the existence of value functions of two-player, zero-sum stochastic differential games. Indiana Univ. Math. J. 38(2), 293–314 (1989)

    Article  MathSciNet  Google Scholar 

  16. Hamadène, S., Lepeltier, J.P.: Zero-sum stochastic differential games and backward equations. Syst. Control Lett. 24(4), 259–263 (1995)

    Article  MathSciNet  Google Scholar 

  17. Hamadène, S., Lepeltier, J.P.: Backward equations, stochastic control and zero-sum stochastic differential games. Stoch. Stoch. Rep. 54(3–4), 221–231 (1995)

    Article  MathSciNet  Google Scholar 

  18. Haussmann, U.G.: A Stochastic Maximum Principle for Optimal Control of Diffusions. Wiley, Hoboken (1986)

    MATH  Google Scholar 

  19. Jacod, J., Shiryaev, A.N.: Limit theorems for stochastic processes. In: Chenciner, A., Chern, S.S. et al. (eds.), Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 288, 2nd edn. Springer, Berlin (2003)

  20. Karatzas, I., Steven, S.: Brownian Motion and Stochastic Calculus, 2nd edn. Springer, New York (2012)

    MATH  Google Scholar 

  21. Li, J., Min, H.: Weak solutions of mean-field stochastic differential equations and application to zero-sum stochastic differential games. SIAM J. Control Optim. 54(3), 1826–1858 (2016)

    Article  MathSciNet  Google Scholar 

  22. Pardoux, E., Peng, S.: Adapted solution of a backward stochastic differential equation. Syst. Control Lett. 14(1), 55–61 (1990)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Said Hamadène.

Appendix

Appendix

For the sake of completeness, we display a poof of the fact that the set of probability measures \({\mathcal {P}}(\Omega )\) endowed with the total variation metric \(D_T\) defined on \((\Omega ,\mathcal {F}_T)\) by

$$\begin{aligned} D_T(P,Q):=2\sup _{A\in \mathcal {F}_T}|P(A)-Q(A)| \end{aligned}$$
(5.20)

is complete. Indeed, let \((Q_n)_{n\ge 0}\) be a Cauchy sequence for \(D_T\). Then , for each set \(A\in \mathcal {F}_T\), the sequence \((Q_n(A))_{n\ge 0}\) is a Cauchy sequence in \(\mathbb {R}\) and thus is a convergent sequence. By the Vitali-Hahn-Saks-Nikodym Theorem, the set-function Q defined on \((\Omega ,\mathcal {F}_T)\) by

$$\begin{aligned} Q(A):=\lim _{n\rightarrow \infty } Q_n(A),\quad A\in \mathcal {F}_T, \end{aligned}$$

is indeed a probability measure.

We will now show that \(D_T(Q_n,Q)\rightarrow 0\). Given \(\varepsilon >0\), there exists an integer \(n_0\) such that if \(m,n>n_0\) and \(A\in \mathcal {F}_T\), such that

$$\begin{aligned} |Q_n(A)-Q_m(A)|< \varepsilon . \end{aligned}$$

Sending m to infinity, we obtain

$$\begin{aligned} |Q_n(A)-Q(A)|\le \varepsilon . \end{aligned}$$

Now taking the supremum over all \(A\in \mathcal {F}_T\), we finally get that \(D_T(Q_n,Q)\rightarrow 0\), as \(n\rightarrow \infty \).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Djehiche, B., Hamadène, S. Optimal Control and Zero-Sum Stochastic Differential Game Problems of Mean-Field Type. Appl Math Optim 81, 933–960 (2020). https://doi.org/10.1007/s00245-018-9525-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00245-018-9525-6

Keywords

Mathematics Subject Classification

Navigation