Skip to main content
Log in

On the Controller-Stopper Problems with Controlled Jumps

  • Published:
Applied Mathematics & Optimization Submit manuscript

Abstract

We analyze the continuous time zero-sum and cooperative controller-stopper games of Karatzas and Sudderth (Ann Probab 29(3):1111–1127, 2001), Karatzas and Zamfirescu (Ann Probab 36(4):1495–1527, 2008) and Karatzas and Zamfirescu (Appl Math Optim 53(2):163–184, 2006) when the volatility of the state process is controlled as in Bayraktar and Huang (SIAM J Control Optim 51(2):1263–1297, 2013) but additionally when the state process has controlled jumps. We perform this analysis by first resolving the stochastic target problems [of Soner and Touzi (SIAM J Control Optim 41(2):404–424, 2002; J Eur Math Soc 4(3):201–236, 2002)] with a cooperative or a non-cooperative stopper and then embedding the original problem into the latter set-up. Unlike in Bayraktar and Huang (SIAM J Control Optim 51(2):1263–1297, 2013) our analysis relies crucially on the Stochastic Perron method of Bayraktar and Sîrbu (SIAM J Control Optim 51(6):4274–4294, 2013) but not the dynamic programming principle, which is difficult to prove directly for games.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Notes

  1. The convergence \(\psi \overset{\text {u.c.}}{\longrightarrow } \varphi \) is understood in the sense that \(\psi \) converges uniformly on compact subsets to \(\varphi \).

  2. This can be easily checked.

  3. C and n may depend on w and T. This also applies to Definitions 3.2, 5.1 and 5.2.

  4. Such \(\alpha \) and \(\gamma \) are unique.

References

  1. Barles, G., Imbert, C.: Second-order elliptic integro-differential equations: viscosity solutions’ theory revisited. Ann. Inst. H. Poincaré Anal. Non Linéaire 25(3), 567–585 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bayraktar, E., Huang, Y.-J.: On the multidimensional controller-and-stopper games. SIAM J. Control Optim. 51(2), 1263–1297 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bayraktar, E., Li, J.: Stochastic perron for stochastic target problems. J. Optim. Theory Appl. 170(3), 1026–1054 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bayraktar, E., Li, J.: Stochastic Perron for stochastic target games. Ann. Appl. Probab. 26(2), 1082–1110 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bayraktar, E., Sîrbu, M.: Stochastic Perron’s method and verification without smoothness using viscosity comparison: the linear case. Proc. Am. Math. Soc. 140(10), 3645–3654 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bayraktar, E., Sîrbu, M.: Stochastic Perron’s method for Hamilton-Jacobi-Bellman equations. SIAM J. Control Optim. 51(6), 4274–4294 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bayraktar, E., Sîrbu, M.: Stochastic Perron’s method and verification without smoothness using viscosity comparison: obstacle problems and Dynkin games. Proc. Am. Math. Soc. 142(4), 1399–1412 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bayraktar, E., Yao, S.: Optimal stopping for non-linear expectations-Part II. Stoch. Process. Appl. 121(2), 212–264 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bayraktar, E., Yao, S.: On the robust optimal stopping problem. SIAM J. Control Optim. 52(5), 3135–3175 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bayraktar, E., Yao, S.: On the robust Dynkin game. Ann. Appl. Probab. 27(3), 1702–1755 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bayraktar, E., Zhang, Y.: Stochastic Perron’s method for the probability of lifetime ruin problem under transaction costs. SIAM J. Control Optim. 53(1), 91–113 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bayraktar, E., Karatzas, I., Yao, S.: Optimal stopping for dynamic convex risk measures. Illinois J. Math. 54(3), 1025–1067 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Bayraktar, E., Cosso, A., Pham, H.: Robust feedback switching control: dynamic programming and viscosity solutions. SIAM J. Control Optim. 54(5), 2594–2628 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  14. Belak, C., Christensen, S., Seifried, F.T.: A general verification result for stochastic impulse control problems. SIAM J. Control Optim. 55(2), 627–649 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  15. Belomestny, D., Krätschmer, V.: Optimal stopping under model uncertainty: randomized stopping times approach. Ann. Appl. Probab. 26(2), 1260–1295 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  16. Bensoussan, A., Lions, J.-L.: Applications of Variational Inequalities in Stochastic Control. Studies in Mathematics and its Applications, vol. 12. North-Holland Publishing Co., Amsterdam (1982). Translated from the French

  17. Bouchard, B.: Stochastic targets with mixed diffusion processes and viscosity solutions. Stoch. Process. Appl. 101(2), 273–302 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  18. Bouchard, B., Dang, N.M.: Optimal control versus stochastic target problems: an equivalence result. Syst. Control Lett. 61(2), 343–346 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Bouchard, B., Nutz, M.: Stochastic target games and dynamic programming via regularized viscosity solutions. Math. Oper. Res. 41(1), 109–124 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  20. Bouchard, B., Vu, T.N.: The obstacle version of the geometric dynamic programming principle: application to the pricing of American options under constraints. Appl. Math. Optim. 61(2), 235–265 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Bouchard, B., Elie, R., Touzi, N.: Stochastic target problems with controlled loss. SIAM J. Control Optim. 48(5), 3123–3150 (2009/2010)

  22. Bouchard, B., Moreau, L., Nutz, M.: Stochastic target games with controlled loss. Ann. Appl. Probab. 24(3), 899–934 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  23. Ceci, C., Bassan, B.: Mixed optimal stopping and stochastic control problems with semicontinuous final reward for diffusion processes. Stoch. Stoch. Rep. 76(4), 323–337 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  24. Cheng, X., Riedel, F.: Optimal stopping under ambiguity in continuous time. Math. Financ. Econ. 7(1), 29–68 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  25. Cohen, S.N., Elliott, R.J.: Stochastic Calculus and Applications, 2nd edn. Probability and its Applications. Springer, Cham (2015)

    Book  MATH  Google Scholar 

  26. Crandall, M.G., Ishii, H., Lions, P.-L.: User’s guide to viscosity solutions of second order partial differential equations. Bull. Am. Math. Soc. (N.S.) 27(1), 1–67 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  27. Dmitry, B.: Stochastic Perron’s method for optimal control problems with state constraints. Electron. Commun. Probab. 19(73), 15 (2014)

    MathSciNet  MATH  Google Scholar 

  28. Ekren, I., Touzi, N., Zhang, J.: Optimal stopping under nonlinear expectation. Stoch. Process. Appl. 124(10), 3277–3311 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  29. El Karoui, N.: Les aspects probabilistes du contrôle stochastique. Ninth Saint Flour Probability Summer School–1979 (Saint Flour. Lecture Notes in Mathematics, vol. 876. Springer, Berlin 1981, 73–238 (1979)

  30. Fleming, W.H., Souganidis, P.E.: On the existence of value functions of two-player, zero-sum stochastic differential games. Indiana Univ. Math. J. 38(2), 293–314 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  31. Karatzas, I., Shreve, S.E.: Brownian Motion and Stochastic Calculus, 2nd edn. Graduate Texts in Mathematics. Springer, Berlin (1991)

    MATH  Google Scholar 

  32. Karatzas, I., Sudderth, W.D.: The controller-and-stopper game for a linear diffusion. Ann. Probab. 29(3), 1111–1127 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  33. Karatzas, I., Zamfirescu, I.-M.: Martingale approach to stochastic control with discretionary stopping. Appl. Math. Optim. 53(2), 163–184 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  34. Karatzas, I., Zamfirescu, I.-M.: Martingale approach to stochastic differential games of control and stopping. Ann. Probab. 36(4), 1495–1527 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  35. Krätschmer, V., Schoenmakers, J.: Representations for optimal stopping under dynamic monetary utility functionals. SIAM J. Financ. Math. 1(1), 811–832 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  36. Krylov, NV.: Controlled Diffusion Processes. Applications of Mathematics, vol. 14, Springer, New York (1980). Translated from the Russian by A. B. Aries

  37. Maitra, A.P., Sudderth, W.D.: Discrete Gambling and Stochastic Games. Applications of Mathematics, vol. 32. Springer, New York (1996)

  38. Maitra, A.P., Sudderth, W.D.: The Gambler and the Stopper, Statistics, Probability and Game Theory. IMS Lecture Notes Monograph Series, vol. 30. Institute of Mathematical Statistics, Hayward, CA, pp. 191–208 (1996)

  39. Moreau, L.: Stochastic target problems with controlled loss in jump diffusion models. SIAM J. Control Optim. 49(6), 2577–2607 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  40. Nutz, M., Zhang, J.: Optimal stopping under adverse nonlinear expectation and related games. Ann. Appl. Probab. 25(5), 2503–2534 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  41. Pham, H.: Optimal stopping of controlled jump diffusion processes: a viscosity solution approach. J. Math. Syst. Estim. Control 8(1), 27 (1998)

    MathSciNet  Google Scholar 

  42. Riedel, F.: Optimal stopping with multiple priors. Econometrica 77(3), 857–908 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  43. Rokhlin, D.B.: Verification by stochastic Perron’s method in stochastic exit time control problems. J. Math. Anal. Appl. 419(1), 433–446 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  44. Rokhlin, D.B., Mironenko, G.: Regular finite fuel stochastic control problems with exit time. Math. Methods Oper. Res. 84(1), 105–127 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  45. Sîrbu, M.: Stochastic Perron’s method and elementary strategies for zero-sum differential games. SIAM J. Control Optim. 52(3), 1693–1711 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  46. Soner, H.M., Touzi, N.: Dynamic programming for stochastic target problems and geometric flows. J. Eur. Math. Soc. 4(3), 201–236 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  47. Soner, H.M., Touzi, N.: Stochastic target problems, dynamic programming, and viscosity solutions. SIAM J. Control Optim. 41(2), 404–424 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  48. Touzi, N.: Optimal Stochastic Control, Stochastic Target Problems, and Backward SDE. Fields Institute Monographs, vol. 29. Fields Institute for Research in Mathematical Sciences, Toronto, ON. Springer, New York (2013). With Chapter 13 by Angès Tourin

  49. Veraguas, J.B., Tangpi, L.: On the dynamic representation of some time-inconsistent risk measures in a Brownian filtration. ArXiv e-prints (2016)

Download references

Acknowledgements

E. Bayraktar is supported in part by the National Science Foundation under Grant DMS-1613170 and the Susan M. Smith Professorship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erhan Bayraktar.

Appendices

Appendix A

We provide sufficient conditions for the nonemptiness of \(\mathbb {U}^+_{\text {unco}}\), \(\mathbb {U}^-_{\text {unco}}\), \(\mathbb {U}^{+}_{\text {co}}\) and \(\mathbb {U}^{-}_{\text {co}}\).

Assumption A.1

g is bounded.

Assumption A.2

There exists \(u_0 \in U\) such that \(\sigma _Y(t,x,y,u_0)=0\) and \(b(t,x,y,u_0(e),e)=0\) for all \((t,x,y,e)\in \mathbb {D}\times \mathbb {R}\times E\).

Proposition A.1

Under Assumptions 2.1, 2.2, A.1 and A.2, \(\mathbb {U}^{+}_{\text {unco}}\) and \(\mathbb {U}^{-}_{\text {co}}\) are not empty.

Proof

We will only show \(\mathbb {U}^{+}_{\text {unco}}\) is not empty. A very similar proof applies to \(\mathbb {U}^{-}_{\text {co}}\).

Step 1 In this step we assume that \(\mu _{Y}\) is non-decreasing in its y-variable. We will show that \(w(t,x)=\gamma -e^{kt}\) is a stochastic super-solution for some choice of k and \(\gamma \).

By the linear growth condition on \(\mu _Y\) in Assumption 2.2, there exists \(L>0\) such that

$$\begin{aligned} |\mu _Y(t,x,y,u_0)|\le L(1+|y|), \end{aligned}$$

where \(u_0\) is the element in U in Assumption A.2. Choose \(k\ge 2L\) and \(\gamma \) such that \(-\,e^{k T}+\gamma \ge \Vert g\Vert _{\infty }\). Then \(w(t,x)\ge w(T,x)\ge g(x)\) for all \((t,x)\in \mathbb {D}\). It suffices to show that for any \((t,x,y)\in \mathbb {D}\times \mathbb {R}\), \(\tau \in \mathcal {T}_t\), \(\nu \in \mathcal {U}^t_{\text {unco}}\) and \(\rho \in \mathcal {T}_{\tau }\),

$$\begin{aligned} Y(\rho )\ge w(\rho , X(\rho )) \;\; \mathbb {P}\text {-a.s.}\;\; \text {on}\;\;\{Y(\tau )\ge w(\tau , X(\tau ))\}, \end{aligned}$$
(A.4)

where \(X:= X_{t,x}^{\nu \otimes _{\tau }u_0}, Y:=Y_{t,x,y}^{\nu \otimes _{\tau }u_0}\).

Let \(A= \{Y(\tau )> w(\tau , X(\tau ))\}\), \(V(s)=w(s,X(s))\) and \(\Gamma (s)=\left( V(s)-Y(s)\right) \mathbb {1}_{A}.\) Therefore, for \(s\ge \tau \),

$$\begin{aligned} dY(s)&= \mu _{Y}\left( s,X(s),Y(s), u_0\right) ds, \;dV(s) \nonumber \\&= -ke^{ks}ds, \; \Gamma (s)=\mathbb {1}_{A}\int _{\tau }^{s} ( \xi (q)+ \Delta (q) ) dq + \mathbb {1}_{A}\Gamma (\tau ) , \text {where} \nonumber \\ \Delta (s)&:=-ke^{ks}-\mu _Y(s,X(s),V(s),u_0)\le -ke^{ks}-\mu _Y(s,X(s),-e^{ks},u_0) \nonumber \\&\le -ke^{ks}+L(1+e^{ks})\le 0, \nonumber \\ \xi (s)&:=\mu _{Y}(s,X(s),V(s),u_0) -\mu _{Y}(s,X(s),Y(s),u_0). \end{aligned}$$
(A.5)

Therefore, from (A.5) and the definitions of \(\Gamma \) and A, it holds that

$$\begin{aligned} \Gamma (s)\le \mathbb {1}_A\int _{\tau }^{s} \xi (q) dq \;\; \text {and}\;\; \Gamma ^{+}(s)\le \mathbb {1}_A\int _{\tau }^{s} \xi ^{+}(q) dq \;\; \text {for} \;\; s\ge \tau . \end{aligned}$$

From the Lipschitz continuity of \(\mu _Y\) in y-variable in Assumption 2.2,

$$\begin{aligned} \Gamma ^{+}(s)\le \mathbb {1}_A \int _{\tau }^{s} \xi ^{+}(q) dq \le \int _{\tau }^{s} L_0 \Gamma ^{+}(q) dq \;\; \text {for} \;\; s\ge \tau , \end{aligned}$$

where \(L_0\) is the Lipschitz constant of \(\mu _Y\) with respect to y. Note that we use the assumption that \(\mu _Y\) is non-decreasing in its y-variable to obtain the second inequality. Since \(\Gamma ^+(\tau )=0\), an application of Grönwall’s Inequality implies that \(\Gamma ^+(\rho )\le 0\), which further implies that (A.4) holds.

Step 2 We get rid of our assumption on \(\mu _{Y}\) from Step 1 by following a proof similar to those in [4] and [19]. For \(c>0\), define \(\widetilde{Y}_{t,x,y}^{\nu }\) as the strong solution of

$$\begin{aligned} \begin{aligned} d\widetilde{Y}(s)&=\tilde{\mu }_{Y}(s,X_{t,x}^{\nu }(s),\widetilde{Y}(s),\nu (s)) ds +\tilde{\sigma }_{Y}^{\top }(s,X_{t,x}^{\nu }(s),\widetilde{Y}(s),\nu (s))dW_{s} \\&\quad + \int _{E} \widetilde{b}^{\top }(s,X_{t,x}^{\nu }(s-),\widetilde{Y}(s-), \nu _1(s),\nu _2(s,e), e)\lambda (ds,de) \end{aligned} \end{aligned}$$

with initial data \(\widetilde{Y}(t)=y\), where

$$\begin{aligned} \widetilde{\mu }_{Y}(t,x,y,u):= & {} c y+e^{ct} \mu _{Y}(t,x,e^{-c t}y,u), \; \widetilde{\sigma }_{Y}(t,x,y,u)\\:= & {} e^{c t} \sigma _{Y}(t,x,e^{-c t} y,u), \\ \widetilde{b}(t,x,y,u(e),e):= & {} e^{c t} b(t,x,e^{-c t} y,u(e),e). \end{aligned}$$

Therefore,

$$\begin{aligned} \widetilde{Y}_{t,x,y}^{\nu }(s)e^{-cs}=Y_{t,x,ye^{-ct}}^{\nu }(s), \;t\le s\le T. \end{aligned}$$
(A.6)

Let

$$\begin{aligned} \tilde{u}_{\text {unco}}(t,x)= \inf \{y\in \mathbb {R}: \exists \; \nu \in \mathcal {U}^t_{\text {unco}}, \text{ s.t. }\; \widetilde{Y}^{\nu }_{t,x,y}(\rho )\ge \tilde{g}(\rho , X^{\nu }_{t,x}(\rho ))\;\text{-a.s. }\}, \end{aligned}$$
(A.7)

where \(\tilde{g}(t, x)=e^{ct} g(x)\). Therefore, from (A.6), \(\tilde{u}_{\text {unco}}(t,x)=e^{ct}u_{\text {unco}}(t,x).\) Since \(\mu _{Y}\) is Lipschitz in y, we can choose \(c>0\) so that \(\widetilde{\mu }_{Y}: (t,x,y,u) \mapsto cy + e^{c t}\mu _{Y}(t,x,e^{-c t}y,u)\) is non-decreasing in y. Moreover, all the properties of \(\widetilde{\mu }_{Y}, \widetilde{\sigma }_{Y}\) and \(\widetilde{b}\) in Assumption 2.2 still hold. We replace \(\mu _Y\), \(\sigma _Y\) and b in all of the equations and definitions in Sect. 2 with \(\widetilde{\mu }_{Y}, \widetilde{\sigma }_{Y}\) and \(\widetilde{b}\), we get \(\widetilde{H}^*\) and \(\widetilde{H}_*\). Let \(\widetilde{\mathbb {U}}^+_{\text {unco}}\) be the set of stochastic super-solutions of the new target problem (A.7). It is easy to see that \(w\in \mathbb {U}^+_{\text {unco}}\) if and only if \(\widetilde{w}(t,x):=e^{ct}w(t,x)\in \widetilde{\mathbb {U}}^+_{\text {unco}}\). From Step 1, \(\widetilde{\mathbb {U}}^+_{\text {unco}}\) is not empty. Thus, \(\mathbb {U}^+_{\text {unco}}\) is not empty. \(\square \)

Assumption A.3

There is \(C\in \mathbb {R}\) such that for all \((t,x,y,u,e)\in \mathbb {D}\times \mathbb {R}\times U\times E\),

$$\begin{aligned} \left| \mu _Y(t,x,y,u)+\int _E b^{\top }(t,x,y,u(e),e) m(de)\right| \le C(1+|y|). \end{aligned}$$

Proposition A.2

Under Assumptions 2.1, 2.2, A.1 and A.3, \(\mathbb {U}_{\text {unco}}^{-}\) and \(\mathbb {U}^{+}_{\text {co}}\) are not empty.

Proof

We will only show that \(\mathbb {U}_{\text {unco}}^{-}\) is not empty. Assume that

$$\begin{aligned} \mu _{Y}(t,x,y,u)+\int _E b^{\top }(t,x,y,u(e),e)m(de) \end{aligned}$$

is non-decreasing in its y-variable. We could remove this assumption by using the argument from previous proposition.

Choose \(k\ge 2C\) (C is the constant in Assumption A.3) and \(\gamma >0\) such that \(e^{k T}-\gamma <- \Vert g\Vert _{\infty }\). Let \(w(t,x)=e^{kt}-\gamma \). Notice that w is continuous, has polynomial growth in x and \(w(T,x)\le g(x)\) for all \(x\in \mathbb {R}^{d}\). It suffices to show that for any \((t,x,y)\in \mathbb {D}\times \mathbb {R}\), \(\tau \in \mathcal {T}_{t}\) and \(\nu \in \mathcal {U}^t_{\text {unco}}\), there exists \(\rho \in \mathcal {T}_{t}\) such that \(\mathbb {P}(Y(\rho )< g( X(\rho ))|B)>0\) for \(B\subset \{Y(\tau )<w(\tau ,X(\tau ))\}\) satisfying \(B\in \mathcal {F}_\tau ^t\) and \(\mathbb {P}(B)>0\), where \(X:= X_{t,x}^{\nu }\) and \(Y:=Y_{t,x,y}^{\nu }\). Define

$$\begin{aligned} \begin{aligned} M(\cdot )&=Y(\cdot )-\int _{\tau }^{\cdot }K(s)ds,\; V(s)=w(s,X(s)), \\ A&= \{Y(\tau )<w(\tau , X(\tau ))\},\; \Gamma (s)=\left( Y(s)-V(s)\right) \mathbb {1}_{A}, \\ \text {where } K(s)&:=\mu _{Y}(s,X(s),Y(s),\nu (s)) \\&\quad +\int _{E}b^{\top }(s,X(s-),Y(s-),\nu _1(s), \nu _2(s,e),e)m(de),\\ \widetilde{K}(s)&:=\mu _{Y}(s,X(s),V(s),\nu (s)) \\&\quad +\int _{E}b^{\top }(s,X(s-), V(s-),\nu _1(s),\nu _2(s,e),e)m(de). \end{aligned} \end{aligned}$$

It is easy to see that M is a martingale after \(\tau .\) Due to the facts that \(A\in \mathcal {F}_\tau ^t\) and \(dV(s)= ke^{ks}ds\), we further know

$$\begin{aligned} \mathbb {1}_{A}\left( Y(\cdot )-V(\cdot )+\int _{\tau }^{\cdot } ke^{ks}-K(s) ds \right) \;\; \text {is a martingale after}\;\;\tau . \end{aligned}$$
(A.8)

Since Assumption A.3 holds and \(\mu _{Y}(t,x,y,u)+\int _E b^{\top }(t,x,y,u(e),e)m(de)\) is non-decreasing in y,

$$\begin{aligned} \widetilde{K}(s)\le & {} \mu _Y(s,X(s),e^{ks}, \nu (s))+\int _{E}b^{\top }(s,X(s-),e^{ks},\nu _1(s),\nu _2(s,e),e)m(de)\\\le & {} 2C e^{ks}. \end{aligned}$$

Therefore, it follows from (A.8), the inequality above and the fact \(k\ge 2C\) that

$$\begin{aligned} \widetilde{M}(\cdot ):=\mathbb {1}_{A}\left( Y(\cdot )-V(\cdot )-\int _{\tau } ^{\cdot }\xi (s)ds)\right) \;\;\text {is a super-martingale after }\tau , \end{aligned}$$
(A.9)

where \(\xi (s):=K(s)-\widetilde{K}(s)\). Since \(\widetilde{M}(\tau )<0\) on B, there exists a non-null set \(F\subset B \) such that \(\widetilde{M}(\rho )<0\) on F for any \(\rho \in \mathcal {T}_{\tau }\). By the definition of \(\widetilde{M}\) in (A.9), we get

$$\begin{aligned} \Gamma (\rho )< \mathbb {1}_{A}\int _{\tau }^{\rho }\xi (s)ds \;\;\text {on}\;\;F. \end{aligned}$$
(A.10)

Therefore,

$$\begin{aligned} \Gamma ^{+}(\rho )\le \mathbb {1}_A\int _{\tau }^{\rho } \xi ^{+}(s) ds \le \int _{\tau }^{\rho } L_0 \Gamma ^{+}(s) ds\;\;\text {on}\;\;F. \end{aligned}$$
(A.11)

By Grönwall’s Inequality, \(\Gamma ^+(\tau )=0\) implies that \(\Gamma ^+(\rho )=0\) on F. More precisely, for \(\omega \in F\) (\(\mathbb {P}-\text {a.s.}\)), \(\Gamma ^{+}(s)(\omega )=0\) for \(s\in [\tau (\omega ),\rho (\omega )]\). This implies that we can replace the inequalities with equalities in (A.11). Therefore, by (A.10), \(\Gamma (\rho )<0\) on F, which yields \(\mathbb {P}(Y(\rho )< g( X(\rho ))|B)>0.\)\(\square \)

Appendix B

Let T be a finite time horizon, given a general probability space \((\Omega , \mathcal {F},\mathbb {P})\) endowed with a filtration \(\mathbb {F} = \{\mathcal {F}_t\}_{0\le t \le T}\) satisfying the usual conditions. Let \(\mathcal {T}_t\) be the set of \(\mathbb {F}\)-stopping times valued in [tT]. In particular, let \(\mathcal {T}:=\mathcal {T}_0\). We assume that \(\mathcal {F}_0\) is trivial. Let us consider an optimal control problem defined as follows. Let \(\mathcal {U}\) be the collection of all \(\mathbb {F}\)-predictable processes valued in \(U\subset \mathbb {R}^k\) and \(\{G^{\nu },\nu \in \mathcal {U}\}\) be a collection of bounded, right-continuous processes valued in \(\mathbb {R}\). Given \((t,\nu )\in [0,T]\times \mathcal {U}\), we consider two optimal stopping control problems:

$$\begin{aligned} V_{\text {unco}}^{\nu }(t)=\mathrm{ess}\!\inf \limits _{\mu \in \mathcal {U}(t,\nu )} \mathrm{ess}\!\sup \limits _{\tau \in \mathcal {T}_t}\mathbb {E}[G^{\mu }(\tau )|\mathcal {F}_t], \end{aligned}$$
(B.12)

and

$$\begin{aligned} V_{\text {co}}^{\nu }(t)=\mathrm{ess}\!\sup \limits _{\mu \in \mathcal {U}(t,\nu )} \mathrm{ess}\!\sup \limits _{\tau \in \mathcal {T}_t}\mathbb {E}[G^{\mu }(\tau )|\mathcal {F}_t], \end{aligned}$$
(B.13)

where \(\mathcal {U}(t,\nu )=\{\mu \in \mathcal {U}, \mu = \nu \;\text {on}\;[0,t]\;\;\mathbb {P}-\text {a.s.}\}\).

Lemma B.2

Given \(t\in [0,T]\) and \(\nu \in \mathcal {U}_{t}\), let \(\mathcal {M}\) be any family of martingales which satisfies the following:

$$\begin{aligned} \begin{array}{c} \text {For any}\;\; \mu \in \mathcal {U}(t,\nu ),\;\text {there exists an}\;\; M\in \mathcal {M} \;\text {such that}\;\; \\ \mathrm{ess}\!\sup \limits _{\tau \in \mathcal {T}_t}\mathbb {E}[G^{\mu }(\tau )|\mathcal {F}_t] + M(\rho )-M(t)\ge G^{\mu }(\rho )\;\;\text {for all }\rho \in \mathcal {T}_t. \end{array} \end{aligned}$$
(B.14)

Then \(V_{\text {unco}}^{\nu }(t)=Y_{\text {unco}}^{\nu }(t),\) where

$$\begin{aligned} \begin{aligned} Y_{\text {unco}}^{\nu }(t)&=\mathrm{ess}\!\inf \limits \Big \{ Y\in L^1(\Omega , \mathcal {F}_t, \mathbb {P})\;|\; \exists (M,\mu )\in \mathcal {M}\times \mathcal {U}(t,\nu ), \text {s.t.}\; Y\\&\quad +\,M(\rho )-M(t)\ge G^{\mu }(\rho )\;\;\text {for all }\rho \in \mathcal {T}_t \Big \}. \end{aligned} \end{aligned}$$

Proof

(1) \(Y_{\text {unco}}^{\nu }(t)\ge V_{\text {unco}}^{\nu }(t)\): Fix \(Y\in L^1(\Omega , \mathcal {F}_t, \mathbb {P})\) and \((M,\mu )\in \mathcal {M}\times \mathcal {U}(t,\nu )\) such that

$$\begin{aligned} Y+M(\rho )-M(t)\ge G^{\mu }(\rho ) \;\;\text {for all }\rho \in \mathcal {T}_t. \end{aligned}$$

By taking the conditional expectation, we get that

$$\begin{aligned} Y \ge \mathbb {E}[G^{\mu }(\rho )|\mathcal {F}_t]\;\;\text {for all }\rho \in \mathcal {T}_t. \end{aligned}$$

which implies that \(Y\ge V_{\text {unco}}^{\nu }(t)\). Therefore, \(Y_{\text {unco}}^{\nu }(t)\ge V_{\text {unco}}^{\nu }(t)\).

(2) \(V_{\text {unco}}^{\nu }(t)\ge Y_{\text {unco}}^{\nu }(t)\): we get from (B.14), for each \(\mu \in \mathcal {U}(t,\nu )\), there exists an \(M\in \mathcal {M}\) such that

$$\begin{aligned} \mathrm{ess}\!\sup \limits _{\tau \in \mathcal {T}_t}\mathbb {E}[G^{\mu }(\tau )|\mathcal {F}_t] +M(\rho )-M(t)\ge G^{\mu }(\rho )\text { for all }\rho \in \mathcal {T}. \end{aligned}$$

This implies that

$$\begin{aligned} \mathrm{ess}\!\sup \limits _{\tau \in \mathcal {T}_t}\mathbb {E}[G^{\mu }(\tau )|\mathcal {F}_t]\ge Y_{\text {unco}}^{\nu }(t), \end{aligned}$$

which further implies \(V_{\text {unco}}^{\nu }(t)\ge Y_{\text {unco}}^{\nu }(t)\). \(\square \)

Lemma B.3

Let \(\mathcal {M}\) be any family of martingales which satisfies the following:

$$\begin{aligned} \text {For any}\;\; \nu \in \mathcal {U} \;\text {and}\; \rho \in \mathcal {T},\;\text {there exists an}\;\; M\in \mathcal {M} \;\text {such that}\;\; G^{\nu }(\rho ) = M(\rho ). \end{aligned}$$
(B.15)

Then for each \((t,\nu )\in [0,T]\times \mathcal {U}\), \(V_{\text {co}}^{\nu }(t)=Y_{\text {co}}^{\nu }(t),\) where

$$\begin{aligned} \begin{aligned} Y_{\text {co}}^{\nu }(t)&=\mathrm{ess}\!\sup \limits \Big \{ Y\in L^1(\Omega , \mathcal {F}_t, \mathbb {P})\;| \exists (M,\mu ,\rho )\in \mathcal {M}\times \mathcal {U}(t,\nu )\times \mathcal {T}_t, \text {s.t.}\;\;Y\\&\quad +\,M(\rho )-M(t)\le G^{\mu }(\rho ) \Big \}. \end{aligned} \end{aligned}$$

Proof

(1) \(Y_{\text {co}}^{\nu }(t)\le V_{\text {co}}^{\nu }(t)\): Fix \(Y\in L^1(\Omega , \mathcal {F}_t, \mathbb {P})\) and \((M,\mu ,\rho )\in \mathcal {M}\times \mathcal {U}(t,\nu )\times \mathcal {T}_t\) such that

$$\begin{aligned} Y+M(\rho )-M(t)\le G^{\mu }(\rho ). \end{aligned}$$

Then by taking the conditional expectation, we get that

$$\begin{aligned} Y \le \mathbb {E}[G^{\mu }(\rho )|\mathcal {F}_t]\le V_{\text {co}}^{\nu }(t), \end{aligned}$$

which implies that \(Y_{\text {co}}^{\nu }(t)\le V_{\text {co}}^{\nu }(t)\).

(2) \(Y_{\text {co}}^{\nu }(t)\ge V_{\text {co}}^{\nu }(t)\): we get from (B.15), for each \(\mu \in \mathcal {U}(t,\nu )\) and \(\rho \in \mathcal {T}_t\), there exists an \(M\in \mathcal {M}\) such that

$$\begin{aligned} \mathbb {E}[G^{\mu }(\rho )|\mathcal {F}_t]+M(\rho )-M(t)=G^{\mu }(\rho ). \end{aligned}$$

In particular,

$$\begin{aligned} \mathbb {E}[G^{\mu }(\rho )|\mathcal {F}_t]+M(\rho )-M(t)\le G^{\mu }(\rho ). \end{aligned}$$

Therefore, \(\mathbb {E}[G^{\mu }(\rho )|\mathcal {F}_t]\le Y_{\text {co}}^{\nu }(t)\), which implies \(V_{\text {co}}^{\nu }(t)\le Y_{\text {co}}^{\nu }(t)\). \(\square \)

Remark B.3

It is clear that a collection of martingales which satisfies (B.15) always exists. In particular, one can take

$$\begin{aligned} \mathcal {M}_{\text {co}}=\{\{\mathbb {E}[G^{\nu }(\rho )|\mathcal {F}_t]\}_{0\le t\le T}, \nu \in \mathcal {U}, \rho \in \mathcal {T}\}. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bayraktar, E., Li, J. On the Controller-Stopper Problems with Controlled Jumps. Appl Math Optim 80, 195–222 (2019). https://doi.org/10.1007/s00245-017-9463-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00245-017-9463-8

Keywords

Mathematics Subject Classification

Navigation