Skip to main content
Log in

Homogenization of Variational Inequalities for the p-Laplace Operator in Perforated Media Along Manifolds

  • Published:
Applied Mathematics & Optimization Submit manuscript

Abstract

We address homogenization problems of variational inequalities for the p-Laplace operator in a domain of \(\mathbb {R}^n\) (\(n\ge \) 3, \(p\in [2,n)\)) periodically perforated by balls of radius \(O(\varepsilon ^\alpha )\) where \(\alpha >1\) and \(\varepsilon \) is the size of the period. The perforations are distributed along a \((n-1)\)-dimensional manifold \(\gamma \), and we impose constraints for solutions and their fluxes (associated with the p-Laplacian) on the boundary of the perforations. These constraints imply that the solution is positive and that the flux is bounded from above by a negative, nonlinear monotonic function of the solution multiplied by a parameter \(\varepsilon ^{-\kappa }\), \(\kappa \in \mathbb {R}\) and \(\varepsilon \) is a small parameter that we shall make to go to zero. We analyze different relations between the parameters \(p, \, n, \, \varepsilon , \, \alpha \) and \(\kappa \), and obtain homogenized problems which are completely new in the literature even for the case \(p=2\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Brillard, A., Gómez, D., Lobo, M., Pérez, E., Shaposhnikova, T.A.: Boundary homogenization in perforated domains for adsorption problems with an advection term. Appl. Anal. 95, 1517–1533 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  2. Cioranescu, D., Murat, F.: A strange term coming from nowhere. In: Cherkaev, A., Kohn, R. (eds.) Topics in the Mathematical Modelling of Composite Materials. Progress in Nonlinear Differential Equations and Their Applications, vol. 31, pp. 45–93. Birkhäuser, Boston, MA (1997)

  3. Díaz, J.I., Gómez-Castro, D., Podolskii, A.V., Shaposhnikova, T.A.: Homogenization of variational inequalities of Signorini type for the \(p\)-Laplacian in perforated domains when \(p\in (1, 2)\). Dokl Math 95, 151–156 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  4. Gómez, D., Lobo, M., Pérez, E., Podolskii, A.V., Shaposhnikova, T.A.: Homogenization for the \(p\)-Laplace operator and nonlinear Robin boundary conditions in perforated media along manifolds. Dokl. Math. 89, 11–15 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. Gómez, D., Lobo, M., Pérez, E., Podolskii, A.V., Shaposhnikova, T.A.: Unilateral problems for the \(p\)-Laplace operator in perforated media involving large parameters. ESAIM Control Optim. Calc. Var. (2017). https://doi.org/10.1051/cocv/2017026

    MATH  Google Scholar 

  6. Gómez, D., Lobo, M., Pérez, E., Shaposhnikova, T.A.: Averaging in variational inequalities with nonlinear restrictions along manifolds. C. R. Mecanique 339, 406–410 (2011)

    Article  Google Scholar 

  7. Gómez, D., Lobo, M., Pérez, E., Shaposhnikova, T.A.: Averaging of variational inequalities for the Laplacian with nonlinear restrictions along manifolds. Appl. Anal. 92, 218–237 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gómez, D., Pérez, E., Shaposhnikova, T.A.: On homogenization of nonlinear Robin type boundary conditions for cavities along manifolds and associated spectral problems. Asymptot. Anal. 80, 289–322 (2012)

    MathSciNet  MATH  Google Scholar 

  9. Gómez, D., Pérez, M.E., Shaposhnikova, T.A.: Spectral boundary homogenization problems in perforated domins with Robin boundary conditions and large parameters. In: Constanda, C., Bodmann, B., Velho, H. (eds.) Integral Methods in Science and Engineering. Progress in Numerical and Analytic Techniques, pp. 155–174. Birkhäuser, New York, NY (2013)

  10. Hornung, U.: Homogenization and Porous Media. Springer, New York (1997)

    Book  MATH  Google Scholar 

  11. Hornung, U., Jäger, W.: Diffusion, convection, adsorption, and reaction of chemicals in porous media. J Differ. Equ. 92, 199–225 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hornung, U., Showalter, R.E.: Elliptic-parabolic equations with hysteresis boundary conditions. SIAM J. Math. Anal. 26, 775–790 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  13. Jäger, W., Neuss-Radu, M., Shaposhnikova, T.A.: Scale limit of a variational inequality modeling diffusive flux in a domain with small holes and strong adsorption in case of a critical scaling. Dokl. Math. 83, 204–208 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kaizu, S.: The Poisson equation with semilinear boundary conditions in domains with many tiny holes. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 36, 43–86 (1989)

  15. Labani, N., Picard, C.: Homogenization of a nonlinear Dirichlet problem in a periodically perforated domain. In: Recent Advances in Nonlinear Elliptic and Parabolic Problems. Pitman Research Notes Mathematics Series 208. Longman Science Technology, Harlow, pp. 294–305 (1989)

  16. Lobo, M., Oleinik, O.A., Perez, M.E., Shaposhnikova, T.A.: On homogenization of solutions of boundary value problem in domains, perforated along manifolds. Ann. Scuola Norm. Sup. Pisa Classe Sci. Ser. 25(4), 611–629 (1997)

  17. Lobo, M., Perez, M.E., Sukharev, V.V., Shaposhnikova, T.A.: Averaging of boundary-value problem in domain perforated along \((n-1)\)-dimensional manifold with nonlinear third type boundary conditions on the boundary of cavities. Dokl. Math. 83, 34–38 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Marpeau, F., Saad, M.: Mathematical analysis of radionuclides displacement in porous media with nonlinear adsorption. J Differ. Equ. 228, 412–439 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. Marsily, G.: Quantitative Hydrogeolog: Groundwater Hydrology for Engineers. Academic Press, Orlando (1986)

    Google Scholar 

  20. Shaposhnikova, T.A., Podolskii, A.V.: Homogenization limit for the boundary value problem with the \(p\)-Laplace operator and a nonlinear third boundary condition on the boundary of the holes in a perforated domain. Funct. Differ. Equ. 19, 351–370 (2012)

    MathSciNet  MATH  Google Scholar 

  21. Showalter, R.E., Walkington, N.J.: Diffusion of fluid in a fissured medium with microstructure. SIAM J. Math. Anal. 22, 1702–1722 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  22. Podolskii, A.V.: Solution continuation and homogenization of a boundary value problem for the \(p\)-Laplacian in a perforated domain with a nonlinear third boundary condition on the boundary of holes. Dokl. Math. 91, 30–34 (2015)

    Article  MathSciNet  Google Scholar 

  23. Zubova, M.N., Shaposhnikova, T.A.: On homogenization of variational inequalities with obstacles on \(\varepsilon \)-periodically situated along \(n-1\) dimension manifold inclusions. Funct. Differ. Equ. 14, 123–143 (2007)

    MathSciNet  MATH  Google Scholar 

  24. Zubova, M.N., Shaposhnikova, T.A.: Homogenization of boundary value problems in perforated domains with the third boundary condition and the resulting change in the character of the nonlinearity in the problem. Differ. Equ. 47(1), 78–90 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Pérez.

Additional information

This work has been partially supported by the Spanish Grant MINECO:MTM2013-44883-P.

Appendix

Appendix

In this section, we introduce some results useful for proofs. The first result provides the existence and uniqueness of the solution of the functional equation (13) arising in the homogenized problem (11)–(12a) while the second one simplifies the computations throughout the paper. The proofs of both results can be found in [5] (cf. Propositions 2.2 and 2.3, respectively).

Lemma 1

Let \(p\ge 2.\) Let \(\varrho \) be a strictly positive constant and let \(\sigma \) be the function \(\sigma (x,u)\) defined from \( \overline{\Omega }\times \mathbb {R}\) into \(\mathbb {R}\) which is assumed to be a continuously differentiable function in \( \overline{\Omega }\times \mathbb {R}\) satisfying (1)–(2). Then, the equation

$$\begin{aligned} |H|^{p-2}H =\varrho \, \sigma (x,\tau -H ) \end{aligned}$$

has a unique solution \(H(x,\tau )\) which is a continuously differentiable function in \( \overline{\Omega }\times (\mathbb {R}\setminus \{0\})\) and continuous in \(\overline{\Omega }\times \mathbb {R},\) and satisfies \(H(x,0)=0\) and

$$\begin{aligned}&(|H(x,u)|^{p-2}H(x,u)-|H(x,v)|^{p-2}H(x,v))(u-v)\ge \widetilde{k}_{1}|u-v|^{p}, \end{aligned}$$
(52)
$$\begin{aligned}&\quad |H(x,u)|\le |u|, \end{aligned}$$
(53)

for all \(x\in \overline{\Omega }, \,u,v\in \mathbb {R}\) and a certain constant \(\widetilde{k}_{1}>0\).

Lemma 2

Let \(p\ge 2\). Let \(v\in W^{1,\infty }(\Omega )\), \(\varphi \in W^{1,p}(\Omega , \partial \Omega )\) and \(\eta _\varepsilon \in W^{1,p}(\Omega , \partial \Omega )\) such that \(\Vert {\nabla \eta _\varepsilon }\Vert _{L^m(\Omega )}\rightarrow 0\), as \(\varepsilon \rightarrow 0\), for \(m\in [1,p)\). Then,

$$\begin{aligned}&\lim _{\varepsilon \rightarrow 0} \int _{\Omega _\varepsilon } \Big (|\nabla (v+\eta _\varepsilon )|^{p-2}\nabla (v+\eta _\varepsilon )- |\nabla v|^{p-2}\nabla v\Big )\nabla \varphi \, dx \nonumber \\&\quad = \lim _{\varepsilon \rightarrow 0} \int _{\Omega _\varepsilon } |\nabla \eta _\varepsilon |^{p-2}\nabla \eta _\varepsilon \nabla \varphi \, dx. \end{aligned}$$
(54)

In addition, (54) also holds in the case where \(\varphi \) depends on \(\varepsilon \), namely \(\varphi \equiv \varphi _\varepsilon \), with \(\Vert {\nabla \varphi _\varepsilon }\Vert _{L^p(\Omega )}\) bounded independently of \(\varepsilon \).

Finally, we introduce the following auxiliary estimates where the constant K does not depend on \(\varepsilon \) nor on the functions w:

Lemma 3

Let \(P^{j}_{\varepsilon }\) be the center of the ball \(G^{j}_{\varepsilon }\) and let \(T^{j}_{\varepsilon /4}\) denote the ball of radius \(\varepsilon /4\) with center \(P^{j}_{\varepsilon }\), \(j\in \Upsilon _{\varepsilon }\). Then,

$$\begin{aligned} \left| \sum \limits _{j\in \Upsilon _{\varepsilon }}\int \limits _{\partial {T^{j}_{\varepsilon /4}}} w \, ds- 2^{2-2n} \omega _{n}\int \limits _{\gamma } w \, d\hat{x}\right| \le K\varepsilon ^{1/2}\Vert w \Vert _{H^{1}(\Omega )}, \quad w\in H_0^1(\Omega ). \end{aligned}$$

See Lemma 1 in [16] for the proof.

Lemma 4

Let \(\Pi _{\varepsilon }=\Omega \cap \{-{\varepsilon }/2<x_{1}<{\varepsilon }/2\}\). Then,

$$\begin{aligned} \left| \frac{1}{\varepsilon }\int \limits _{\Pi _\varepsilon } w^2 \, dx-\int \limits _{\gamma } w^2 \, d\hat{x}\right| \le K\varepsilon ^{1/2} \Vert \nabla w \Vert ^2_{L^2(\Omega )}, \quad w\in H_0^1(\Omega ). \end{aligned}$$

See Lemma 2.6 in [8] for precise references for the proof.

Lemma 5

Let \(\Pi _{\varepsilon }=\Omega \cap \{-{\varepsilon }/2<x_{1}<{\varepsilon }/2\}\). Let \(w\in W^{1,p}(\Omega )\), \(2\le p <n\). Then,

$$\begin{aligned}&\Vert w\Vert _{L^p(G_\varepsilon )}^p \le K \left( a_\varepsilon \Vert w\Vert _{L^p(S_\varepsilon )}^p +a_\varepsilon ^p\Vert \nabla w\Vert _{L^p(G_\varepsilon )}^p\right) , \quad \text{ and }\\&\quad \Vert w\Vert _{L^p(\Pi _\varepsilon \setminus G_\varepsilon )}^p \le K \big (a_\varepsilon ^{1-n}\varepsilon ^{n} \Vert w\Vert _{L^p(S_\varepsilon )}^p +a_\varepsilon ^{p-n}\varepsilon ^{n}\Vert \nabla w\Vert _{L^p(\Omega )}^p\big ). \end{aligned}$$

See Theorem 5.1 in [8] and Lemma 2.6 in [5] related to the proofs of the first and the second inequality respectively.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gómez, D., Pérez, E., Podolskii, A.V. et al. Homogenization of Variational Inequalities for the p-Laplace Operator in Perforated Media Along Manifolds. Appl Math Optim 79, 695–713 (2019). https://doi.org/10.1007/s00245-017-9453-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00245-017-9453-x

Keywords

Mathematics Subject Classification

Navigation