Skip to main content

Advertisement

Log in

Blow-Up Phenomena for Gradient Flows of Discrete Homogeneous Functionals

  • Published:
Applied Mathematics & Optimization Submit manuscript

Abstract

We investigate gradient flows of some homogeneous functionals in \(\mathbb R^N\), arising in the Lagrangian approximation of systems of self-interacting and diffusing particles. We focus on the case of negative homogeneity. In the case of strong self-interaction (super critical case), the functional possesses a cone of negative energy. It is immediate to see that solutions with negative energy at some time become singular in finite time, meaning that a subset of particles concentrate at a single point. Here, we establish that all solutions become singular in finite time, in the super critical case, for the class of functionals under consideration. The paper is completed with numerical simulations illustrating the striking non linear dynamics when initial data have positive energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ambrosio, L., Gigli, N., Savaré, G.: Gradient Flows in Metric Spaces and in the Space of Probability Measures. Lectures in Mathematics ETH Zürich, second ed. Birkhäuser Verlag, Basel (2008)

  2. Bedrossian, J., Kim, I.C.: Global existence and finite time blow-up for critical Patlak-Keller-Segel models with inhomogeneous diffusion. SIAM J. Math. Anal. 45, 934–964 (2013). doi:10.1137/120882731

    Article  MathSciNet  MATH  Google Scholar 

  3. Blanchet, A.: On the parabolic-elliptic patlak-keller-segel system in dimension 2 and higher. Séminaire équations aux dérivées partielles (2014)

  4. Blanchet, A., Calvez, V., Carrillo, J.A.: Convergence of the mass-transport steepest descent scheme for the subcritical Patlak-Keller-Segel model. SIAM J. Numer. Anal. 46, 691–721 (2008). doi:10.1137/070683337

    Article  MathSciNet  MATH  Google Scholar 

  5. Blanchet, A., Carrillo, J.A., Laurençot, P.: Critical mass for a Patlak-Keller-Segel model with degenerate diffusion in higher dimensions. Calc. Var. Partial Differ. Equ. 35, 133–168 (2009). doi:10.1007/s00526-008-0200-7

    Article  MathSciNet  MATH  Google Scholar 

  6. Calvez, V., Carrillo, J., Hoffmann, F.: In preparation

  7. Calvez, V., Carrillo, J.A.: Refined asymptotics for the subcritical Keller-Segel system and related functional inequalities. Proc. Am. Math. Soc. 140, 3515–3530 (2012). doi:10.1090/S0002-9939-2012-11306-1

    Article  MathSciNet  MATH  Google Scholar 

  8. Calvez, V., Gallouët, T.O.: Particle approximation of the one dimensional keller-segel equation, stability and rigidity of the blow-up. DCDS-A (2015) (to appear)

  9. Calvez, V., Perthame, B., Sharifi tabar, M.: Modified Keller-Segel system and critical mass for the log interaction kernel. In: Stochastic analysis and partial differential equations, Contemporary Mathematics, vol. 429, pp. 45–62. American Mathematical Society, Providence, RI (2007). doi:10.1090/conm/429/08229

  10. Campos, J.F., Dolbeault, J.: Asymptotic estimates for the Parabolic-Elliptic Keller-Segel model in the plane. Commun. Partial Differ. Equ. 39, 806–841 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dolbeault, J., Toscani, G.: Improved interpolation inequalities, relative entropy and fast diffusion equations. Ann. Inst. H. Poincaré Anal. Non Linéaire 30, 917–934 (2013). doi:10.1016/j.anihpc.2012.12.004

    Article  MathSciNet  MATH  Google Scholar 

  12. Dolbeault, J., Toscani, G.: Best matching Barenblatt profiles are delayed. J. Phys. A 48, 065206 (2015). doi:10.1088/1751-8113/48/6/065206

    Article  MathSciNet  MATH  Google Scholar 

  13. Gosse, L., Toscani, G.: Lagrangian numerical approximations to one-dimensional convolution-diffusion equations. SIAM J. Sci. Comput. 28, 1203–1227 (2006). doi:10.1137/050628015

    Article  MathSciNet  MATH  Google Scholar 

  14. Hillen, T., Painter, K.J.: A user’s guide to PDE models for chemotaxis. J. Math. Biol. 58, 183–217 (2009). doi:10.1007/s00285-008-0201-3

    Article  MathSciNet  MATH  Google Scholar 

  15. Jordan, R., Kinderlehrer, D., Otto, F.: The variational formulation of the Fokker-Planck equation. SIAM J. Math. Anal. 29, 1–17 (1998). doi:10.1137/S0036141096303359

    Article  MathSciNet  MATH  Google Scholar 

  16. Lieb, E.H., Loss, M.: Analysis. Graduate Studies in Mathematics, vol. 14. American Mathematical Society, Providence, RI (1997)

    Google Scholar 

  17. McCann, R.J.: A convexity principle for interacting gases. Adv. Math. 128, 153–179 (1997). doi:10.1006/aima.1997.1634

    Article  MathSciNet  MATH  Google Scholar 

  18. Otto, F.: The geometry of dissipative evolution equations: the porous medium equation. Commun. Partial Differ. Equ. 26, 101–174 (2001). doi:10.1081/PDE-100002243

    Article  MathSciNet  MATH  Google Scholar 

  19. Sugiyama, Y.: Global existence in sub-critical cases and finite time blow-up in super-critical cases to degenerate keller-segel systems. Differ. Integral Equ. 19, 841–876 (2006)

    MathSciNet  MATH  Google Scholar 

  20. Villani, C.: Topics in Optimal Transportation. Graduate Studies in Mathematics, vol. 58. American Mathematical Society, Providence, RI (2003). doi:10.1007/b12016

    MATH  Google Scholar 

  21. Villani, C.: Optimal Transport. Old and New. Grundlehren der Mathematischen Wissenschaften. Springer, Berlin (2009). doi:10.1007/978-3-540-71050-9

    Book  MATH  Google Scholar 

  22. Yao, Y.: Asymptotic behavior for critical Patlak-Keller-Segel model and a repulsive-attractive aggregation equation. Ann. Inst. H. Poincaré Anal. Non Linéaire 31, 81–101 (2014). doi:10.1016/j.anihpc.2013.02.002

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

This project has received funding from the European Research Council (ERC) under the European Unions Horizon 2020 research and innovation programme (Grant Agreement No. 639638). T. O. Gallouët was supported by the ANR contract ISOTACE (ANR-12-MONU-013) and by the Fonds de la Recherche Scientifique - FNRS under Grant MIS F.4539.16.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas O. Gallouët.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Calvez, V., Gallouët, T.O. Blow-Up Phenomena for Gradient Flows of Discrete Homogeneous Functionals. Appl Math Optim 79, 453–481 (2019). https://doi.org/10.1007/s00245-017-9443-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00245-017-9443-z

Keywords

Mathematics Subject Classification

Navigation