Skip to main content
Log in

A Variational Characterization of the Effective Yield Set for Ionic Polycrystals

  • Published:
Applied Mathematics & Optimization Submit manuscript

Abstract

The effective yield set of ionic polycrystals is characterized by means of variational principles in \(L^\infty \) associated to supremal functionals acting on matrix-valued divergence-free fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bocea, M., Nesi, V.: \(\Gamma \)-Convergence of power-law functionals, variational principles in \(L^\infty \), and applications. SIAM J. Math. Anal. 39, 1550–1576 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bocea, M., Mihăilescu, M.: \(\Gamma \)-Convergence of power-law functionals with variable exponents. Nonlinear Anal. 73, 110–121 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bocea, M., Popovici, C.: Variational principles in \(L^{\infty }\) with applications to antiplane shear and plane stress plasticity. J. Convex Anal. 18(2), 403–416 (2011)

    MATH  MathSciNet  Google Scholar 

  4. Bocea, M., Mihăilescu, M., Popovici, C.: On the asymptotic behavior of variable exponent power-law functionals and applications. Ricerche Mat. 59(2), 207–238 (2010)

    Article  MATH  Google Scholar 

  5. Braides, A.: \(\Gamma \)-Convergence for Beginners. Oxford University Press, Oxford (2002)

    Book  MATH  Google Scholar 

  6. Braides, A., Defranceschi, A.: Homogenization of multiple integrals. In: Oxford Lectutr Series in Mathematics and Its Applications, vol. 12. Oxford University Press, Oxford (1998)

  7. Dacorogna, B.: Weak continuity and weak lower semicontinuity for nonlinear functionals. In: Lecture Notes in Mathematics, vol. 922. Springer, New York (1982)

  8. Dal Maso, G.: An introduction to \(\Gamma \)-convergence. In: Progress in Nonlinear Differential Equations and their Applications, vol. 8. Birkäuser, Boston (1993)

  9. De Giorgi, E.: Sulla convergenza di alcune succesioni di integrali del tipo dell’area. Rend. Mat. 8, 277–294 (1975)

    MATH  MathSciNet  Google Scholar 

  10. De Giorgi, E., Franzoni, T.: Su un tipo di convergenza variazionale. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 58, 842–850 (1975)

    Google Scholar 

  11. Fonseca, I., Müller, S.: \({\cal A}\)-Quasiconvexity, lower semicontinuity, and Young measures. SIAM J. Math. Anal. 30, 1355–1390 (1999)

  12. Garroni, A., Kohn, R.V.: Some three-dimensional problems related to dielectric breakdown and polycrystal plasticity. Proc. R. Soc. Lond. A 459, 2613–2625 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  13. Garroni, A., Nesi, V., Ponsiglione, M.: Dielectric breakdown: optimal bounds. Proc. R. Soc. Lond. A 457, 2317–2335 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  14. Goldsztein, G.H.: Rigid perfectly plastic two-dimensional polycrystals. Proc. R. Soc. Lond. A 457, 2789–2798 (2001)

    Article  MATH  Google Scholar 

  15. Goldsztein, G.H.: Two-dimensional rigid polycrystals whose grains have one ductile direction. Proc. R. Soc. Lond. A 459, 1949–1968 (2003)

    Article  MATH  Google Scholar 

  16. Hutchinson, J.W.: Bounds and self-consistent estimates for creep of polycrystalline materials. Proc. R. Soc. Lond. A 348, 101–127 (1976)

    Article  MATH  Google Scholar 

  17. Jikov, V.V., Kozlov, S.M., Oleinik, O.A.: Homogenization of Differential Operators and Integral Functionals. Springer, New York (1994)

  18. Kohn, R.V., Little, T.D.: Some model problems of polycrystal plasticity with deficient basic crystals. SIAM J. Appl. Math. 59, 172–197 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  19. Murat, F.: Compacité par compensation: condition necessaire et suffisante de continuité faible sous une hypothése de rang constant. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 8(4), 68–102 (1981)

    Google Scholar 

  20. Tartar, L.: Compensated compactness and applications to partial differential equations. In: Knops, R. (ed.) Nonlinear Analysis and Mechanics: Heriot-Watt Symposium, vol. IV. Pitman Research Notes in Mathematics, vol. 39, pp. 136–212. Longman, Harlow (1979)

  21. Tartar, L.: The compensated compactness method applied to systems of conservation laws. In: Ball, J.M. (ed.) Systems of Nonlinear Partial Differential Equations. D. Riebel, Dordrecht (1983)

Download references

Acknowledgments

The research of F. Abdullayev was partially funded by the National Science Foundation under Grant No. DMS-1156393. The research of M. Bocea was partially funded by the National Science Foundation under Grants No. DMS-0806789 and DMS-1156393. M. Mihăilescu has been partially supported by the CNCS-UEFISCDI Grant No. PN-II-ID-PCE-2011-3-0075 “Analysis, Control and Numerical Approximations of Partial Differential Equations”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marian Bocea.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abdullayev, F., Bocea, M. & Mihăilescu, M. A Variational Characterization of the Effective Yield Set for Ionic Polycrystals. Appl Math Optim 69, 487–503 (2014). https://doi.org/10.1007/s00245-013-9232-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00245-013-9232-2

Keywords

Mathematics Subject Classification

Navigation