Skip to main content
Log in

Contamination of Water, Sediment and Fish with Residues of Pesticides Used in Cotton Production in Northern Benin

  • Published:
Archives of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

In Northern Benin, insecticides are used for cotton production. These insecticides can be easily transferred to water ponds close to cotton fields. To monitor insecticides levels in water, sediments and fish samples from water ponds, a GC–MS analytical method was developed to detect residues of endosulfan, DDT and its parent compounds, isomers of HCH, pyrethroids and chlorpyrifos. In addition, the influence of storage conditions of water sample on pesticides determination performance has been studied. The limits of quantification were between 0.16 and 0.32 µg/L in water, 0.5 and 1 μg/kg in sediment and 1 and 2 μg/kg in fish. Twenty samples of water, twenty of sediments and forty of fish were taken in four different water reservoirs at five different times. Alpha-endosulfan, lambda-cyhalothrin and permethrin were identified in sediment while p,p′-DDE, α- and β-HCH, chlorpyrifos, lambda-cyhalothrin and permethrin were detected in fish. Only organochlorines were determined in water because of the lack of recovery of pyrethroids from water stored in glass. Concentrations of insecticide residues in sediment for all water ponds ranged from non-detected to 101 µg/kg and from non-detected to 36 µg/kg in fish. Preliminary risk assessment for consumers of the North of Benin showed that the Estimated Daily Intakes were lower than the Acceptable Daily Intakes and Acute Reference Doses for all consumers. However, as one fish can be contaminated by five pesticide residues at the same time, it is not possible to exclude a risk for the consumer due to his exposure to mixtures of pesticides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and material

Not applicable.

Code availability

Not applicable.

References

  • Adam S, Edorh PA, Totin H, Koumolou L, Amoussou E, Aklikokou K, Boko M (2010) Pesticides et métaux lourds dans l’eau de boisson, les sols et les sédiments de la ceinture cotonnière de Gogounou, Kandi et Banikoara (Bénin). Int J Biol Chem Sci 4:1170–1179

    Google Scholar 

  • Agagbé AA (2008) Etude écotoxicochimique des résidus de pesticides dans le bassin-versant de la rivière Agbado par la technique d'analyse ELISA en phase solide. Thèse d'ingénieur des travaux en aménagement et protection de l'environnement, Université d'Abomey-Calavi (Bénin)

  • Agbohessi PT, Toko II, Attakpa EY, Kestemont P (2011) Caractérisation des pesticides chimiques utilisés en production cotonnière et impact sur les indicateurs économiques dans la Commune de Banikoara au Nord du Bénin. Int J Biol Chem Sci 5:1828–1841. https://doi.org/10.4314/ijbcs.v5i5.6

    Article  Google Scholar 

  • Agbohessi PT, Toko II, Kestemont P (2012) Etat des lieux de la contamination des écosystèmes aquatiques par les pesticides organochlorés dans le bassin cotonnier Béninois. Cahier Des Agric 21:46–56. https://doi.org/10.1684/agr.2012.0535

    Article  Google Scholar 

  • Agbohessi PT, Imorou-Toko I, Ouédrago A, Jauniaux T, Mandiki SNM, Kestemont P (2015) Assessment of the health status of wild fish inhabiting a cotton basin heavily impacted by pesticides in Benin (West Africa). Sci Total Environ 506(507):567–584. https://doi.org/10.1016/j.scitotenv.2014.11.047

    Article  CAS  Google Scholar 

  • Akan BW (2013) Levels and distribution of chlorinated pesticide residues in water and sediments of Tarkwa Bay, Lagos Lagoon. J Res Environ Sci Toxicol 2:1–8

    Google Scholar 

  • SANTE/11945/2015 (2015) Analytical quality control and method validation procedures for pesticide residues analysis in food and feed

  • Barbini DA, Vanni F, Girolimetti S, Dommarco R (2007) Development of an analytical method for the determination of residues of four pyrethroids in meat by GC-ECD and confirmation by GC-MS. Anal Bioanal Chem 389:1791–1798. https://doi.org/10.1007/s00216-007-1440-7

    Article  CAS  Google Scholar 

  • Brandt C, Burnett DC, Arcinas L, Palace V, Gary AW (2015) Effects of chlorpyrifos on in vitro sex steroid production and thyroid follicular development in adult and larval Lake Sturgeon, Acipenser fulvescens. Chemosphere 132:179–187

    Article  CAS  Google Scholar 

  • Choi M, Lee IS, Jung RH (2016) Rapid determination of organochlorine pesticides in fish using selective pressurized liquid extraction and gas chromatography–mass spectrometry. Food Chem 205:1–8. https://doi.org/10.1016/j.foodchem.2016.02.156

    Article  CAS  Google Scholar 

  • Corcellas C, Eljarrat E, Barceló D (2015) First report of pyrethroid bioaccumulation in wild river fish: a case study in Iberian river basins (Spain). Environ Int 75:110–116. https://doi.org/10.1016/j.envint.2014.11.007

    Article  CAS  Google Scholar 

  • De Perre C, Whiting SA, Lydy MJ (2015) A simultaneous extraction method for organophosphate, pyrethroid and neonicotinoid insecticides in aqueous samples. Arch Environ Contam Toxicol 58:745–756. https://doi.org/10.1007/s00244-015-0128-9

    Article  CAS  Google Scholar 

  • Dognon SR, Dognon HR, Abdou-Karim AY, Scippo ML, Abdou-Karim IY (2018) The use of pesticides in North-East Benin. Int J Agron Agric R 6:48–63

    Google Scholar 

  • EC (European Commission) (2002) Commission Decision of 12 August 2002 implementing Council Directive 96/23/EC concerning the performance of analytical methods and the interpretation of results. Official Journal of the European Communities, L 221/8

  • EFSA (European Food Safety Authority) (2005) Opinion of the scientific panel on contaminants in the food chain on request from the Commission related to gamma-HCH and other hexachlorocyclohexanes as undesirable substances in animal feed. EFSA J 250:1–39

    Google Scholar 

  • EFSA (European Food Safety Authority) (2014) Conclusion on the peer review of the pesticide human health risk assessment of the active substance chlorpyrifos. EFSA J 12(4):3640

    Google Scholar 

  • EFSA (European Food Safety Authority) (2015) Conclusion on the peer review of the pesticide risk assessment of the active substance lambda-cyhalothrin. EFSA J 12(5):3677

    Google Scholar 

  • Ernst W (1977) Determination of the bioconcentration potential of estuarine/ marine organisms–a steady state approach, bioconcentration data for seven chlorinated pesticides in mussels (Mytilus edulis) and their relation to solubility. Chemosphere, 6:731–740.

    Article  CAS  Google Scholar 

  • TDC Environmental (2003) Insecticide market trends and potential water quality implications. TDC environmental report, San Francisco Estuary Project, 105

  • Ezemonye L, Ogbeide O, Tongo I (2015) Distribution and ecological risk assessment of pesticide residues in surface water, sediment and fish from Ogbesse River, Edo state, Nigeria. J Environ Chem Ecotoxicol 7:20–30. https://doi.org/10.5897/JECE2014.0337

    Article  Google Scholar 

  • Fosu-Mensah BY, Okoffo ED, Mensah M (2015) Synthetic pyrethroids pesticide residues in soils and drinking water sources from cocoa farms in Ghana. Environ Pol J 5:60. https://doi.org/10.5539/ep.v5n1p60

    Article  Google Scholar 

  • Francesc A, Esteve T, Agustin P, De la Guardia M (2006) Comparison of different mass spectrometric detection techniques in the gas chromatographic analysis of pyrethroid insecticide residues in soil after microwave-assisted extraction. Anal Bioanal Chem 384:801–809. https://doi.org/10.1007/s00216-005-0209-0

    Article  CAS  Google Scholar 

  • Gadhave PD, Brar RS, Banga HS, Dhawan A (2014) Studies on acute toxicity of synthetic pyrethroid λ-cyhalothrin on freshwater fish labeo rohita. Vet World 7:7–9. https://doi.org/10.14202/vetworld.2014.7-9

    Article  CAS  Google Scholar 

  • Gouda AI (2018) Analyse des risques environnementaux liés aux pratiques phytosanitaires dans les écosystèmes aquatiques du bassin cotonnier (Nord Bénin) (Doctoral thesis). Université de Liège, Gembloux Agro-Bio Tech, Belgique

  • Gouda AI, Mahodjègbé H, Mehoba L, Imorou Toko I, Scippo ML, Kestemont P, Schiffers B (2018) Comparaison de la dérive pour deux types de pulvérisateurs utilisés en production cotonnière au Bénin. Biotechnol Agron Soc Environ 22:94–105

    Google Scholar 

  • ICH (International Conference on Harmonization of technical requirements for registration of pharmaceuticals for Human use) (2005) Validation of analytical procedures: test and methodology Q2 (R1)

  • Ismail AA, Wang K, Olson JR, Bonner MR, Hendy O, Abdel RG, Rohlman DS (2017) The impact of repeated organophosphorus pesticide exposure on biomarkers and neurobehavioral outcomes among adolescent pesticide applicators. J Toxicol Environ Health A 80:542–555

    Article  CAS  Google Scholar 

  • Isworo S, Purwanto I, Sabdono A (2015) Impact of pesticide use on organophosphorus and organochlorine concentration in water and sediment of Rawa Pening Lake, Indonesia. Res J Environ Sci 9:233–240. https://doi.org/10.3923/rjes.2015.233.240

    Article  CAS  Google Scholar 

  • JMPR (Joint (FAO/WHO) Meeting on Pesticide Residues (2000) Pesticide residues in food. Report of the 2000 FAO/WHO joint meeting of experts 249

  • JMPR (Joint (FAO/WHO) Meeting on Pesticide Residues (2006) Use of JMPR reports and evaluations by registration authorities 276

  • Jun W, Jinhua W, Lusheng Z, Hui X, Bo S, Xinxin H (2014) The enzyme toxicity and genotoxicity of chlorpyrifos and its toxic metabolite TCP to zebrafish Danio rerio. Ecotoxicology 23(10):1858–1869.

    Article  Google Scholar 

  • Kumar N, Sharma R, Tripathi G, Kumar K, Dalvi RS, Krishna G (2016) Cellular metabolic, stress, and histological response on exposure to acute toxicity of endosulfan in Tilapia (Oreochromis mossambicus). Environ Toxicol 31:106–115

    Article  CAS  Google Scholar 

  • Kumari U, Singh R, Mazumder S (2017) Chronic endosulfan exposure impairs immune response rendering Clarias gariepinus susceptible to microbial infection. Aquat Toxicol 191:42–49. https://doi.org/10.1016/j.aquatox.2017.07.018

    Article  CAS  Google Scholar 

  • Lee S, Gan J (2002) Recovery of synthetic pyrethroids in water samples during storage and extraction. J Agric Food Chem 50:7194–7198

    Article  CAS  Google Scholar 

  • Lee N, Beasley HL, Skerritt JH (1998) Development of immunoassays for type II synthetic pyrethroids. assay specificity and application to water, soil and grain. J Agric Food Chem 46:535–546

    Article  CAS  Google Scholar 

  • Mawussi G (2008) Bilan environnemental de l'utilisation de pesticides organochlorés dans les cultures de coton, café et cacao au Togo et recherches d'alternatives par l'évaluation du pouvoir insecticide d'extraits de plantes locales contre le scolyte du café (Hypothenemus hampei ferrari). Doctoral thesis, Université de Toulouse (France)

  • Mekebri AD, Crane BG, Blondina JD, Oros RJ, Rocca L (2008) Extraction and analysis methods for the determination of pyrethroid isecticides in surface water, sediments and biological tissues at environmentally relevant concentrations. Bull Environ Contam Toxicol 80:455–460. https://doi.org/10.1007/s00128-008-9382-0

    Article  CAS  Google Scholar 

  • Menezes RG, Qadir TF, Moin A, Fatima H, Hussain SA, Madadin M, Pasha SB, Al Rubaish FA, Senthilkumaran S (2017) Endosulfan poisoning: an overview. J Forensic Leg Med 51:27–33

    Article  Google Scholar 

  • Mohammadnejad M, Farhadpour M, Mahdavi V, Tabrizchi M (2017) Rapid monitoring and sensitive determination of DDT and its metabolites in water sample using solid-phase extraction followed by ion mobility spectrometry. Int J Ion Mobil Spectrom 20:23–30

    Article  CAS  Google Scholar 

  • Molina-Ruiz JM, Cieslik E, Cieslik I, Walkowska I (2015) Determination of pesticide residues in fish tissues by modified QuEChERS method and dual-d-SPE clean-up coupled to gas chromatography–mass spectrometry. Environ Sci Pollut Res 22:369–378. https://doi.org/10.1007/s11356-014-3361-2

    Article  CAS  Google Scholar 

  • Montory M, Ferrer J, Rivera D, Villouta MV, Grimalt JO (2017) First report on organochlorine pesticides in water in a highly productive agro-industrial basin of the Central Valley, Chile. Chemosphere 174:148–156. https://doi.org/10.1016/j.chemosphere.2016.12.125

    Article  CAS  Google Scholar 

  • Nguyen Quoc T, Douny C, Tran Minh P, Brose F, Nguyen Thanh P, Do Thi Thanh H, Kestemont P, Scippo ML (2018) Screening of quinalphos, trifluralin and dichlorvos residues in fresh water of aquaculture systems in Mekong Delta, Vietnam. Aquac Res 53:35–41. https://doi.org/10.1080/03601234.2017.1371551

    Article  CAS  Google Scholar 

  • Nwani CD, Ivoke N, Ugwu DO, Atama C, Onyishi GC, Echi PC, Ogbonna SA (2015) Investigation on acute toxicity and behavioral changes in a freshwater African catfish, Clarias gariepinus (Burchell, 1822), exposed to organophosphorous pesticide, termifos. Pak J Zool 4:959–965

    Google Scholar 

  • Ogbeide O, Tongo I, Ezemonye L (2015) Risk assessment of agricultural pesticides in water, sediment, and fish from Owan River, Edo State, Nigeria. Environ Monit Assess 187:654. https://doi.org/10.1007/s10661-015-4840-8

    Article  CAS  Google Scholar 

  • Okoumassoun LE, Brochu C, Deblois C, Akponan S, Marion M, Averill-Bates D, Denizeau F (2002) Vitellogenin in tilapia male fishes exposed to organochlorine pesticides in Oueme River in Republic of Benin. Sci Total Environ 299:163–172. https://doi.org/10.1016/S0048-9697(01)01053-1

    Article  CAS  Google Scholar 

  • Oluah NS, Chineke AC (2014) Alterations in the biochemical parameters of the African catfish Clarias gariepinus [Burchell] exposed to sublethal concentrations of lambda-cyhalothrin. Ann Environ Sci 8:1–7

    Google Scholar 

  • Osibanjo O, Biney C, Calamari D, Kaba N, Mbome IL, Naeve H (1994) Chlorinated hydrocarbon substances. In: Calamari D, Naeve H (eds) Review of pollution in the African aquatic environment. CIFA technical paper Rome: Food and Agricultural Organization of the United Nations, FAO

  • Pastor-Belda M, Navarro-Jiménez T, Garrido I, Viñas P, Campillo N, Fenoll J, Hernández-Córdoba M (2018) Magnetic solid-phase extraction or dispersive liquid–liquid microextraction for pyrethroid determination in environmental samples. J Sep Sci 41:2565–2575. https://doi.org/10.1002/jssc.201800109

    Article  CAS  Google Scholar 

  • Patočka J, Wu Q, França TCC, Ramalho TC, Pita R, Kuča K (2016) Clinical aspects of the poisoning by the pesticide endosulfan. Quim Nova 39:987–994

    Google Scholar 

  • Pazou EYA, Lalèyè P, Boko M, Van Gestel CAM, Ahissou H, Akpona A, Van Hattum B, Swart K, Van Straalen NM (2006) Contamination of fish by organochlorine pesticide residues in the Ouémé River catchment in the Republic of Benin. Environ Int 32:594–599. https://doi.org/10.1016/j.envint.2006.01.003

    Article  CAS  Google Scholar 

  • Ramandeep K, Susheela R, Ashok Kumar M, Jatinder Singh A (2014) Determination of endosulfan isomers and their metabolites in tap water and commercial samples using microextraction by packed sorbent and GC–MS. J Sep Sci 37:966–973

    Article  Google Scholar 

  • Reemtsmaa T, Alder L, Banasiaka U (2013) A multimethod for the determination of 150 pesticide metabolites in surface water and groundwater using direct injection liquid chromatography–mass spectrometry. J Chrom A 1271:95–104

    Article  Google Scholar 

  • Restek (2014) Lambda-cyhalothrin, acetamiprid, beta-cyfluthrin, cypermethrin compounds. Information and applications for GC and LC analysis. www.restek.com. Accessed 27/08/2021

  • Soclo HH (2003) Étude de l'impact de l'utilisation des engrais chimiques et des pesticides par les populations riveraines sur les écosystèmes (eaux de surface, substrat des réserves de faune) dans les complexes des aires protégées de la Pendjari et du W. Rapport d'étude. CENAGREF, Cotonou. https://bj.chm-cbd.net/biodiversity/parcs-nationaux/aires-protegees-natinaux/pesticidesdanslesparcsnationaux.pdf

  • Tellez-Bañuelos MC, Santerre A, Casas-Solis J, Bravo-Cuellar A, Zaitseva G (2009) Oxidative stress in macrophages from spleen of Nile tilapia (Oreochromis niloticus) exposed to sublethal concentration of endosulfan. Fish Shellfish Immunol 27:105–111. https://doi.org/10.1016/j.fsi.2008.11.002

    Article  CAS  Google Scholar 

  • Timoroğlu I, Yüzbaşıoğlu D, Ünal F, Yılmaz S, Aksoy H, Çelik M (2014) Assessment of the genotoxic effects of organophosphorus insecticides phorate and trichlorfon in human lymphocytes. Environ Toxicol 29:577–587

    Article  Google Scholar 

  • Tiwari MK, Guha S (2013) Simultaneous analysis of endosulfan, chlorpyrifos, and their metabolites in natural soil and water samples using gas chromatography-tandem mass spectrometry. Environ Monit Assess 185:8451–8463

    Article  CAS  Google Scholar 

  • Toledo MCF, Jonsson CJ (1992) Bioaccumulation and elimination of endosulfan in zebra fish (Brachydanio rerio). Pest Manag. Sci 36:205–211.

    Google Scholar 

  • Tu W, Xu C, Lu B, Lin C, Wu Y, Liu W (2016) Acute exposure to synthetic pyrethroids causes bioconcentration and disruption of the hypothalamus–pituitary–thyroid axis in zebrafish embryos. Sci Total Environ 542:876–885. https://doi.org/10.1016/j.scitotenv.2015.10.131

    Article  CAS  Google Scholar 

  • Unyimadu JP, Osibanjo O, Babayemi JO (2018) Selected persistent organic pollutants (POPs) in water of River Niger: occurrence and distribution. Environ Monit Assess 190:1–18

    Article  CAS  Google Scholar 

  • You J, Lydy MJ (2004) Simultaneous determination of pyrethroid, organophosphate, and organochlorine pesticides in fish tissue using tandem solid-phase extraction clean-up. Intern J Environ Anal Chem 84:559–571. https://doi.org/10.1080/0306731042000208761

    Article  CAS  Google Scholar 

  • Yu K, Li G, Feng W, Liu L, Zhang J, Wu W, Xu L, Yan Y (2015) Chlorpyrifos is estrogenic and alters embryonic hatching, cell proliferation and apoptosis in zebrafish. Chem Biol Interact 239:26–33. https://doi.org/10.1016/j.cbi.2015.06.010

    Article  CAS  Google Scholar 

  • Zhou Q, Wu W, Xie G (2013) Solid phase extraction with silicon dioxide microsphere adsorbents in combination with gas chromatography-electron capture detection for the determination of DDT and its metabolites in water samples. J Environ Sci Health B 48:191–197

    Article  CAS  Google Scholar 

  • Zoumenou BGYM, Aïna MP, Imorou Toko I, Igout A, Douny C, Brose F, Schiffers B, Gouda I, Chabi Sika K, Kestemont P, Scippo ML (2019) Occurrence of acetamiprid residues in water reservoirs in the cotton basin of northern Benin. Bull Envir Contam Toxicol 102:7–12. https://doi.org/10.1007/s00128-018-2476-4

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank ARES-CCD for funding the research project AquatoxBenin and François Brose for the technical help during the analysis.

Funding

This work has been funded by the ARES-CCD (Academy of Research and Higher Education-Committee for Development Cooperation, Belgium).

Author information

Authors and Affiliations

Authors

Contributions

Caroline Douny and Y.M. Berny’s G. Zoumenou wrote the manuscript and realized the analysis. Martin Aïna and Ibrahim Imorou Toko organized the collection of samples. Ahmed Igout supervised the analysis. François Brose realized the analysis. Léa Guedegba and Sika K. Chabi collected the samples. Patrick Kestemont and Marie-Louise Scippo supervised the analysis.

Corresponding author

Correspondence to Caroline Douny.

Ethics declarations

Conflict of interest

The authors of the article state that they have no conflict of interest.

Ethics approval

Not applicable.

Consent to participate

All the authors agreed to participate in the publication (see author’s contribution).

Consent to publication

All the authors gave their consent for publication.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Douny, C., Zoumenou, Y.M.B.G., Aïna, M. et al. Contamination of Water, Sediment and Fish with Residues of Pesticides Used in Cotton Production in Northern Benin. Arch Environ Contam Toxicol 81, 367–385 (2021). https://doi.org/10.1007/s00244-021-00888-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00244-021-00888-2

Navigation