Skip to main content

Advertisement

Log in

Source Apportionment of PM10 Over Three Tropical Urban Atmospheres at Indo-Gangetic Plain of India: An Approach Using Different Receptor Models

  • Published:
Archives of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

The present work is the ensuing part of the study on spatial and temporal variations in chemical characteristics of PM10 (particulate matter with aerodynamic diameter ≤ 10 μm) over Indo Gangetic Plain (IGP) of India. It focuses on the apportionment of PM10 sources with the application of different receptor models, i.e., principal component analysis with absolute principal component scores (PCA-APCS), UNMIX, and positive matrix factorization (PMF) on the same chemical species of PM10. The main objective of this study is to perform the comparative analysis of the models, obtained mutually validated outputs and more robust results. The average PM10 concentration during January 2011 to December 2011 at Delhi, Varanasi, and Kolkata were 202.3 ± 74.3, 206.2 ± 77.4, and 171.5 ± 38.5 μg m−3, respectively. The results provided by the three models revealed quite similar source profile for all the sampling regions, with some disaccords in number of sources as well as their percent contributions. The PMF analysis resolved seven individual sources in Delhi [soil dust (SD), vehicular emissions (VE), secondary aerosols (SA), biomass burning (BB), sodium and magnesium salt (SMS), fossil fuel combustion, and industrial emissions (IE)], Varanasi [SD, VE, SA, BB, SMS, coal combustion, and IE], and Kolkata [secondary sulfate (Ssulf), secondary nitrate, SD, VE, BB, SMS, IE]. However, PCA-APCS and UNMIX models identified less number of sources (besides mixed type sources) than PMF for all the sampling sites. All models identified that VE, SA, BB, and SD were the dominant contributors of PM10 mass concentration over the IGP region of India.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Amato F, Pandolfi M, Escrig A, Querol X, Alastuey A, Pey J, Pérez N, Hopke PK (2009) Quantifying road dust re-suspension in urban environment by multi linear engine: a comparison with PMF2.5. Atmos Environ 43:2770–2780

    Article  CAS  Google Scholar 

  • Andreae MO, Merlet P (2001) Emission of trace gases and aerosols from biomass burning. Glob Biogeochem Cycles 15:955–966

    Article  CAS  Google Scholar 

  • Balachandran S, Meena BR, Khillare PS (2000) Particle size distribution and its elemental composition in the ambient air of Delhi. Environ Int 26(1):49–54

    Article  CAS  Google Scholar 

  • Banerjee T, Murari V, Kumar M, Raju MP (2015) Source apportionment of airborne particulates through receptor modeling: Indian scenario. Atmos Res 164:167–187

    Article  CAS  Google Scholar 

  • Begum BA, Biswas SK, Markwitz A, Hopke PK (2010) Identification of sources of fine and coarse particulate matter in Dhaka, Bangladesh. Aerosol Air Qual Res 10(4):345–353

    Article  CAS  Google Scholar 

  • Begum BA, Biswas SK, Hopke PK (2011) Key issues in controlling air pollutants in Dhaka, Bangladesh. Atmos Environ 45(40):7705–7713

    Article  CAS  Google Scholar 

  • Belis CA, Karagulian F, Larsen BR, Hopke PK (2013) Critical review and meta-analysis of ambient particulate matter source apportionment using receptor models in Europe. Atmos Environ 69:94–108

    Article  CAS  Google Scholar 

  • Beuck H, Quass U, Klemm O, Kuhlbusch TAJ (2011) Assessment of sea salt and mineral dust contributions to PM10 in NW Germany using tracer models and positive matrix factorization. Atmos Environ 45(32):5813–5821

    Article  CAS  Google Scholar 

  • Brauer M, Freedman G, Frostad J, Van Donkelaar A, Martin RV, Dentener F, Balakrishnan K (2015) Ambient air pollution exposure estimation for the global burden of disease 2013. Environ Sci Technol 50(1):79–88

    Article  CAS  Google Scholar 

  • Cesari D, Amato F, Pandolfi M, Alastuey A, Querol X, Contini D (2016) An inter-comparison of PM10 source apportionment using PCA and PMF receptor models in three European sites. Environ Sci Pollut Res 23(15):15133–15148

    Article  CAS  Google Scholar 

  • Cesari D, De Benedetto GE, Bonasoni P, Busetto M, Dinoi A, Merico E, Marinoni A (2018) Seasonal variability of PM2.5 and PM10 composition and sources in an urban background site in Southern Italy. Sci Total Environ 612:202–213

    Article  CAS  Google Scholar 

  • Chakraborty A, Gupta T (2010) Chemical characterization and source apportionment of submicron (PM1) aerosol in Kanpur region, India. Aerosol Air Qual Res 10(5):433–445

    Article  CAS  Google Scholar 

  • Chan TW, Mozurkewich M (2007) Simplified representation of atmospheric aerosol size distributions using absolute principal component analysis. Atmos Chem Phys 7(3):875–886

    Article  CAS  Google Scholar 

  • Chen LWA, Watson JG, Chow JC, Magliano KL (2007) Quantifying PM2.5 source contributions for the San Joaquin Valley with multivariate receptor models. Environ Sci Technol 41(8):2818–2826

  • Chow JC, Watson JG, Chen LWA, Arnott WP, Moosmuller H (2004) Equivalence of elemental carbon by thermal/optical reflectance and transmittance with different temperature protocols. Environ Sci Techno 38:4414–4422

    Article  CAS  Google Scholar 

  • Contini D, Belosi F, Gambaro A, Cesari D, Stortini AM, Bove MC (2012) Comparison of PM10 concentrations and metal content in three different sites of the Venice Lagoon: an analysis of possible aerosol sources. J Environ Sci 24(11):1954–1965

    Article  CAS  Google Scholar 

  • Cusack M, Pérez N, Pey J, Alastuey A, Querol X (2013) Source apportionment of fine PM and sub-micron particle number concentrations at a regional background site in the western Mediterranean: a 2.5 year study. Atmos Chem Phys 13(10):5173–5187

    Article  CAS  Google Scholar 

  • Dachs J, Eisenreich SJ (2000) Adsorption onto aerosol soot carbon dominates gas-particle partitioning of polycyclic aromatic hydrocarbons. Environ Sci Tech 34(17):3690–3697

    Article  CAS  Google Scholar 

  • Das M, Maiti SK, Mukhopadhyay U (2006) Distribution of PM2.5 and PM10–2.5 in PM10 fraction in ambient air due to vehicular pollution in Kolkata megacity. Environ Monit Assess 122(1–3):111–123

    Article  CAS  Google Scholar 

  • EPA PMF User Guide (2008) EPA Positive matrix Factorization (PMF) 3.0 Fundamentals and User Guide. US-EP Office of Research and Development

  • Favez O, Haddad IE, Piot C, Boréave A, Abidi E, Marchand N, Wortham H (2010) Inter-comparison of source apportionment models for the estimation of wood burning aerosols during wintertime in an Alpine city (Grenoble, France). Atmos Chem Phys 10(12):5295–5314

    Article  CAS  Google Scholar 

  • García JH, Li WW, Cárdenas N, Arimoto R, Walton J, Trujillo D (2006) Determination of PM2.5 sources using time-resolved integrated source and receptor models. Chemosphere 65(11):2018–2027

    Article  CAS  Google Scholar 

  • Goyal P, Sidhartha (2002) Effect of winds on SO2 and SPM concentration in Delhi. Atmos Environ 36:2925–2930

    Article  CAS  Google Scholar 

  • Gugamsetty B, Wei H, Liu CN, Awasthi A, Hsu SC, Tsai CJ et al (2012) Source characterization and apportionment of PM10, PM2.5 and PM0.1 by using positive matrix factorization. Aerosol Air Qual Res 12:476–491

    Article  CAS  Google Scholar 

  • Gupta AK, Karar K, Srivastava A (2007) Chemical mass balance source apportionment of PM10 and TSP in residential and industrial sites of an urban region of Kolkata, India. J Hazard Mater 142(1):279–287

    Article  CAS  Google Scholar 

  • Guttikunda SK, Lodoysamba S, Bulgansaikhan B, Dashdondog B (2013) Particulate pollution in Ulaanbaatar, Mongolia. Air Qual Atmos Heal 6:589–601. https://doi.org/10.1007/s11869-013-0198-7

    Article  CAS  Google Scholar 

  • Harrison RM, Beddows DC, Dall’Osto M (2011) PMF analysis of wide range particle size spectra collected on a major highway. Environ Sci Technol 45(13):5522–5528

    Article  CAS  Google Scholar 

  • Henry RC (1997) History and fundamentals of multivariate air quality receptor models. Chemom Intell Lab Syst 37(1):37–42

    Article  CAS  Google Scholar 

  • Henry RC (2003) Multivariate receptor modeling by N-dimensional edge detection. Chemom Intell Lab Syst 65(2):179–189

    Article  CAS  Google Scholar 

  • Ho KF, Lee SC, Chow JC, Watson JG (2003) Characterization of PM10 and PM2.5 source profiles for fugitive dust in Hong Kong. Atmos Environ 37(8):1023–1032

    Article  CAS  Google Scholar 

  • Hopke PK (2016) Review of receptor modeling methods for source apportionment. J Air Waste Manag Assoc 66(3):237–259

    Article  Google Scholar 

  • Hopke PK, Ito K, Mar T, Christensen WF, Eatough DJ, Henry RC et al (2006) PM source apportionment and health effects: 1. Intercomparison of source apportionment results. J Exp Sci Environ Epidemiol 16(3):275–286

    Article  CAS  Google Scholar 

  • IPCC (2013) Intergovernmental panel on climate change; technical summary. Climate change 2013, the physical science basis. Contribution of working group I to the fifth assessment report, pp 33–115. https://doi.org/10.1017/cbo9781107415324.005

  • Jaeckels JM, Bae MS, Schauer JJ (2007) Positive matrix factorization (PMF) analysis of molecular marker measurements to quantify the sources of organic aerosols. Environ Sci Techno 41(16):5763–5769

    Article  CAS  Google Scholar 

  • Jain S, Sharma SK, Choudhary N, Masiwal R, Saxena M, Sharma A et al (2017a) Chemical characteristics and source apportionment of PM2.5 using PCA/APCS UNMIX and PMF at an urban site of Delhi, India. Environ Sci Pollut Res 24(17):14637–14656

    Article  CAS  Google Scholar 

  • Jain S, Sharma SK, Mandal TK, Saxena M (2017b) Source apportionment of PM10 in Delhi, India using PCA/APCS, UNMIX and PMF. Particuology. https://doi.org/10.1016/j.partic.2017.05.009

  • Jaiprakash Singhai A, Habib G, Raman RS, Gupta T (2017) Chemical characterization of PM1.0 aerosol in Delhi and source apportionment using positive matrix factorization. Environ Sci Pollut Res 24(1):445–462

    Article  CAS  Google Scholar 

  • Jeong JH, Shon ZH, Kang M, Song SK, Kim YK, Park J, Kim H (2017) Comparison of source apportionment of PM2.5 using receptor models in the main hub port city of East Asia: Busan. Atmos Environ 148:115–127

    Article  CAS  Google Scholar 

  • Karagulian F, Belis CA, Dora CFC, Prüss-Ustün AM, Bonjour S, Adair-Rohani H, Amann M (2015) Contributions to our cities air pollution: a global analysis of field studies for health impact consideration. Atmos Environ 120:475–483

    Article  CAS  Google Scholar 

  • Karar K, Gupta AK (2007) Source apportionment of PM10 at residential and industrial sites of an urban region of Kolkata. India. Atmos Res 84(1):30–41

    Article  CAS  Google Scholar 

  • Khare P, Baruah BP (2010) Elemental characterization and source identification of PM2.5 using multivariate analysis at the suburban site of north-east India. Atmos Res 98(1):148–162

    Article  CAS  Google Scholar 

  • Khillare PS, Balachandran S, Meena BR (2004) Spatial and temporal variation of heavy metals in atmospheric aerosol of Delhi. Environ Monit Asses 90(1–3):1–21

    Article  CAS  Google Scholar 

  • Kong S, Ding X, Bai Z, Han B, Chen L, Shi J, Li Z (2010) A seasonal study of polycyclic aromatic hydrocarbons in PM2.5 and PM2.5–10 in five typical cities of Liaoning Province, China. J Hazard Mater 183(1):70–80

    Article  CAS  Google Scholar 

  • Kothai P, Saradhi IV, Prathibha P, Hopke PK, Pandit GG, Puranik VD (2008) Source apportionment of coarse and fine particulate matter at Navi Mumbai, India. Aerosol Air Qual Res 8(4):423–436

    Article  CAS  Google Scholar 

  • Kulshrestha A, Satsangi PG, Masih J, Taneja A (2009) Metal concentration of PM2.5and PM10 particles and seasonal variations in urban and rural environment of Agra, India. Sci Total Environ 407(24):6196–6204

    Article  CAS  Google Scholar 

  • Kumar AV, Patil RS, Nambi KSV (2001) Source apportionment of suspended particulate matter at two traffic junctions in Mumbai, India. Atmos Environ 35(25):4245–4251

    Article  CAS  Google Scholar 

  • Lee JH, Yoshida Y, Turpin BJ, Hopke PK, Poirot RL, Lioy PJ, Oxley JC (2002) Identification of sources contributing to mid-Atlantic regional aerosol. J Air Waste Manag Assoc 52(10):1186–1205

    Article  CAS  Google Scholar 

  • Li Z, Hopke PK, Husain L, Qureshi S, Dutkiewicz VA, Schwab JJ, Demerjian KL (2004) Sources of fine particle composition in New York city. Atmos Environ 38(38):6521–6529

    Article  CAS  Google Scholar 

  • Mandal P, Saud T, Sarkar R, Mandal A, Sharma SK, Mandal TK et al (2014) High seasonal variation of atmospheric C and particle concentrations in Delhi, India. Environ Chem Lett 12(1):225–230

    Article  CAS  Google Scholar 

  • Manousakas M, Papaefthymiou H, Diapouli E, Migliori A, Karydas AG, Bogdanovic Radovic I, Eleftheriadis K (2017) Assessment of PM2.5 sources and their corresponding level of uncertainty in a coastal urban area using EPA PMF 5.0 enhanced diagnostics. Sci Total Environ 574:155–164

    Article  CAS  Google Scholar 

  • Murari V, Kumar M, Barman SC, Banerjee T (2015) Temporal variability of MODIS aerosol optical depth and chemical characterization of airborne particulates in Varanasi, India. Environ Sci Pollut Res 22(2):1329–1343

    Article  CAS  Google Scholar 

  • Ogundele LT, Owoade OK, Olise FS, Hopke PK (2016) Source identification and apportionment of PM2.5 and PM2.5-10 in iron and steel scrap smelting factory environment using PMF, PCFA and UNMIX receptor models. Environ Monit Assess 188(10):574

    Article  CAS  Google Scholar 

  • Paatero P (1999) The multilinear engine—a table-driven, least squares program for solving multilinear problems, including the n-way parallel factor analysis model. J Comput Gr Stat 8(4):854–888

    Google Scholar 

  • Paatero P, Tapper U (1994) Positive matrix factorization: a non-negative factor model with optimal utilization of error estimates of data values. Environmetrics 5(2):111–126

    Article  Google Scholar 

  • Pachauri T, Satsangi A, Singla V, Lakhani A, Kumari KM (2013) Characteristics and sources of carbonaceous aerosols in PM2.5 during wintertime in Agra, India. Aerosol Air Qual Res 13(3): 977–991

  • Pandey P, Patel DK, Khan AH, Barman SC, Murthy RC, Kisku GC (2013) Temporal distribution of fine particulates (PM2.5, PM10), potentially toxic metals, PAHs and metal-bound carcinogenic risk in the population of Lucknow City, India. J Environ Sci Health A 48(7):730–745

  • Pant P, Harrison RM (2012) Critical review of receptor modeling for particulate matter: a case study of India. Atmos Environ 49:1–12

    Article  CAS  Google Scholar 

  • Perrino C, Tiwari S, Catrambone M, Dalla Torre S, Rantica E, Canepari S (2011) Chemical characterization of atmospheric PM in Delhi, India, during different periods of the year including Diwali festival. Atmos Pollut Res 2(4):418–427

    Article  CAS  Google Scholar 

  • Pope CA III, Ezzati M, Dockery DW (2009) Fine-particulate air pollution and life expectancy in the United States. N Engl J Med 360(4):376–386

    Article  CAS  Google Scholar 

  • Ram K, Sarin MM (2010) Spatio-temporal variability in atmospheric abundances of EC, OC and WSOC over Northern India. J Aerosol Sci 41(1):88–98

    Article  CAS  Google Scholar 

  • Raman RS, Ramachandran S (2010) Annual and seasonal variability of ambient aerosols over an urban region in western India. Atmos Environ 44(9):1200–1208

    Article  CAS  Google Scholar 

  • Ramgolam K, Favez O, Cachier H, Gaudichet A, Marano F (2009) Size-partitioning of an urban aerosol to identify particle determinants involved in the pro inflammatory response induced in airway epithelial cells. Part Fibre Toxicol 6:1–12

    Article  CAS  Google Scholar 

  • Robinson AL, Subramanian R, Donahue NM, Bernardo-Bricker A, Rogge WF (2006) Source apportionment of molecular markers and organic aerosol. 2. Biomass smoke. Environ Sci Technol 40:7811–7819

    Article  CAS  Google Scholar 

  • Saraswati Sharma SK, Mandal TK (2017) Five-year measurements of ambient ammonia and its relationships with other trace gases at an urban site of Delhi, India. Meteorol Atmos Phys 130(2):241–257

    Article  Google Scholar 

  • Seinfeld JH, Pandis SN (2016) Atmospheric chemistry and physics: from air pollution to climate change. Wiley, New York

    Google Scholar 

  • Sen A, Ahammed YN, Banerjee T, Chatterjee A, Choudhuri AK, Das T, Mandal TK (2016) Spatial variability in ambient atmospheric fine and coarse mode aerosols over Indo-Gangetic plains, India and adjoining oceans during the onset of summer monsoons. Atmos Pollut Res 7(3):521–532

    Article  Google Scholar 

  • Sharma DN, Sawant AA, Uma R, Cocker DR (2003) Preliminary chemical characterization of particle-phase organic compounds in New Delhi, India. Atmos Environ 37(30):4317–4323

    Article  CAS  Google Scholar 

  • Sharma SK, Mandal TK, Saxena M, Sharma A, Datta A, Saud T (2014a) Variation of OC, EC, WSIC and trace metals of PM10 in Delhi, India. J Atmos Solar Terrestrial Phys 113:10–22

    Article  CAS  Google Scholar 

  • Sharma SK, Mandal TK, Saxena M, Sharma A, Gautam R (2014b) Source apportionment of PM10 by using positive matrix factorizationat an urban site of Delhi, India. Urban Climate 10:656–670

    Article  Google Scholar 

  • Sharma SK, Sharma A, Saxena M, Choudhary N, Masiwal R, Mandal TK et al (2015) Chemical characterization and source apportionment of aerosol at an urban area of central Delhi, India. Atmos Pollut Res 7:110–121

    Article  Google Scholar 

  • Sharma SK, Mandal TK, Jain S, Saraswati, Sharma A, Saxena M (2016a) Source apportionment of PM2.5 in Delhi, India Using PMF Model. Bull Environ Contam Toxicol 97(2):286–293

  • Sharma SK, Mandal TK, Srivastava MK, Chatterjee A, Jain S, Saxena M et al (2016b) Spatio-temporal variation in chemical characteristics of PM10 over Indo Gangetic Plain of India. Environ Sci Pollut Res 23(18):18809–18822

    Article  CAS  Google Scholar 

  • Sharma SK, Agarwal P, Mandal TK, Karapurkar SG, Shenoy DM, Peshin SK et al (2017) Study on ambient air quality of megacity Delhi, India during odd-even strategy. MAPAN 32(2):155–165

    Article  Google Scholar 

  • Sharma SK, Mandal TK, Sharma A, Jain S, Saraswati (2018a) Carbonaceous species of PM2.5 in megacity Delhi, India during 2012–2016. Bull Environ Contamin Toxicol 100:695–701

    Article  CAS  Google Scholar 

  • Sharma SK, Mandal TK, Sharma A, Saraswati, Jain S (2018b) Seasonal and annual trends of carbonaceous species in PM10 over a megacity Delhi, India during 2010–2017. J Atmos Chem. https://doi.org/10.1007/s10874-018-9379-y

    Article  Google Scholar 

  • Shi GL, Liu GR, Peng X, Wang YN, Tian YZ, Wang W, Feng YC (2014) A comparison of multiple combined models for source apportionment, including the PCA/MLR-CMB, UNMIX-CMB and PMFCMB models. Aerosol Air Qual Res 14(7):2040–2050

    Article  Google Scholar 

  • Shridhar V, Khillare PS, Agarwal T, Ray S (2010) Metallic species in ambient particulate matter at rural and urban location of Delhi. J Hazard Mater 175(1):600–607

    Article  CAS  Google Scholar 

  • Song Y, Xie S, Zhang Y, Zeng L, Salmon LG, Zheng M (2006) Source apportionment of PM2.5 in Beijing using principal component analysis/absolute principal component scores and UNMIX. Sci Total Environ 372(1):278–286

  • Srimuruganandam B, Nagendra SS (2012) Source characterization of PM10 and PM2.5 mass using a chemical mass balance model at urban roadside. Sci Total Environ 433:8–19

    Article  CAS  Google Scholar 

  • Thurston GD, Spengler JD (1985) A quantitative assessment of source contributions to inhalable particulate matter pollution in metropolitan Boston. Atmos Environ 19(1):9–25

    Article  CAS  Google Scholar 

  • Tiwari S, Chate DM, Srivastaua AK, Bisht DS, Padmanabhamurty B (2012) Assessments of PM1, PM2.5 and PM10 concentrations in Delhi at different mean cycles. Geofizika 29(2):125–141

  • Tiwari S, Pervez S, Cinzia P, Bisht DS, Kumar A, Chate DM (2013) Chemical characterization of atmospheric particulate matter in Delhi, India, Part II: Source apportionment studies using PMF 3.0. Sustainable Environ Res 23(5):295–306

  • Viana M, Kuhlbusch TAJ, Querol X, Alastuey A, Harrison RM, Hopke PK et al (2008) Source apportionment of particulate matter in Europe: a review of methods and results. J Aerosol Sci 39(10):827–849

    Article  CAS  Google Scholar 

  • WHO (2014) Ambient (outdoor) air pollution in cities database 2014.World Health Organization http://www.who.int/phe/healthtopics/outdoorair/databases/AAP_database_results_2014.pdf. Accessed 11 Nov 2017

  • Yin J, Harrison RM, Chen Q, Rutter A, Schauer JJ (2010) Source apportionment of fine particles at urban background and rural sites in theUK atmosphere. Atmos Environ 44(6):841–851

    Article  CAS  Google Scholar 

  • Zhang R, Jing J, Tao J, Hsu SC, Wang G, Cao J et al (2013) Chemical characterization and source apportionment of PM2.5in Beijing: seasonal perspective. Atmos Chem Phys 13(14):7053–7074

  • Zheng M, Cass GR, Ke L, Wang F, Schauer JJ, Edgerton ES, Russell AG (2007) Source apportionment of daily fine particulate matter at Jefferson Street, Atlanta, GA, during summer and winter. J Air Waste Manag Assoc 57(2):228–242

    Article  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the Director, CSIR-NPL, New Delhi, and Head, Environmental Sciences and Biomedical Metrology Division, CSIR-NPL, New Delhi, for their encouragement and support for this study. The authors also acknowledge Council of Scientific and Industrial Research (CSIR), New Delhi, for providing financial support for this study (under CSIR-EMPOWER Project: OLP-102132). One of the authors, Srishti Jain, thankfully acknowledge the Department of Science and Technology (DST), New Delhi, for awarding the INSPIRE Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudhir Kumar Sharma.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 103 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jain, S., Sharma, S.K., Srivastava, M.K. et al. Source Apportionment of PM10 Over Three Tropical Urban Atmospheres at Indo-Gangetic Plain of India: An Approach Using Different Receptor Models. Arch Environ Contam Toxicol 76, 114–128 (2019). https://doi.org/10.1007/s00244-018-0572-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00244-018-0572-4

Navigation