Skip to main content
Log in

Design and Testing of a New Diatom-Based Index for Heavy Metal Pollution

  • Published:
Archives of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

The Tinto and Odiel river basins (SW Spain) are known worldwide for their unique water characteristics. Such uniqueness is a consequence of their flow through the Iberian Pyrite Belt (an area rich in metal sulphides) and the mining activities in the basins. A process of sulphide oxidation occurs in this region, which acidifies the water and increases the amount of heavy metals in it. As a result, the rivers suffer the so-called “acid mine drainage” (AMD). Traditional biotic diatom-based indexes (IPS, IBD, EPI-D, etc.) do not take into account the pollution caused by AMD. The purpose of this paper is to develop a new diatom-based index which can serve as a useful and quick monitoring tool. Such tool must reflect the level of AMD while being user friendly. We present the development and validation of the ICM (Índice de Contaminación por Metales or Metal Pollution Index). ICM demonstrated to meet successfully the above criteria and, therefore, can assess water quality in the Tinto and Odiel Rivers. In addition, ICM was applied with satisfactory results in the Guadiamar River (SW Spain), which was subjected to AMD too. Thus, we propose to make use of it in any other basin with the same type of pollution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. Available at www.bio-met.net.

References

  • Arambarri P, Cabrera F, González-Quesada R (1996) Quality evaluation of the surface waters entering the Doñana National Park (SW Spain). Sci Total Environ 191:185–196

    Article  CAS  Google Scholar 

  • Berger WH, Parker FL (1970) Diversity of planktonic Foraminifera in deep sea sediments. Science 168:1345–1347

    Article  CAS  Google Scholar 

  • Bey M, Ector L (2013) Atlas des diatomées des cours d’eau de la région Rhône-Alpes. Direction régionale de l’Environnement, de l’Aménagement et du Logement Rhône-Alpes

  • Blanco S, Becares E, Alvarez I, Cejudo C, Hoffmann L (2010) Atlas de las Diatomeas de la cuenca del Duero. University of Leon. ISBN: 9788497735360

  • Cattaneo A, Couillard Y, Wunsam S, Courcelles M (2004) Diatom taxonomic and morphological changes as indicators of metal pollution and recovery in Lac Dufault (Quebec, Canada). J Paleolimnol 32(2):149–163

    Article  Google Scholar 

  • Cattaneo A, Couillard Y, Wunsam S (2008) Sedimentary diatoms along a temporal and spatial gradient of metal contamination. J Paleolimnol 40:115–127

    Article  Google Scholar 

  • Cattaneo A, De Sève M, Morabito G, Mosello R, Tartari G (2011) Periphyton changes over 20 years of chemical recovery of Lake Orta, Italy: differential response to perturbation of littoral and pelagic communities. J Limnol 70(2):177–185

    Article  Google Scholar 

  • Chen X, Mao X, Cao Y, Yang X (2013) Use of siliceous algae as biological monitors and heavy metal pollution in three lakes in a mining city, southeast China. Int J Oceanogr Hidrobiol 42(3):233–242

    CAS  Google Scholar 

  • Clements WH, Carlisle DM, Lazorchak JM, Johnson PC (2000) Heavy metals structure benthic communities in Colorado mountain streams. Ecol Appl 10:626–638

    Article  Google Scholar 

  • Cunningham L, Snape I, Stark JS, Riddle MJ (2005) Benthic diatom community response to environmental variables and metal concentrations in a contaminated bay adjacent to Casey Station, Antarctica. Mar Pollut Bull 50:264–275

    Article  CAS  Google Scholar 

  • DeNicola DM (2000) A review of diatoms found in highly acidic environments. Hydrobiologia 433:111–122

    Article  Google Scholar 

  • Duong TT, Morin S, Herlory O, Feurtet-Mazel A, Coste M, Boudou A (2008) Seasonal effects of cadmium accumulation in periphytic diatom communities of freshwater biofilms. Aquat Toxicol 90(1):19–28

    Article  CAS  Google Scholar 

  • Ector L, Wetzel CE, Novais M, Guillard D (2015) Atlas des diatomées des rivières des Pays de la Loire et de la Bretagne. DREAL Pays de la Loire, Nantes

    Google Scholar 

  • EPA (1974) Method 415.1. Organic carbon (combustion or oxidation). Methods for analysis of water and wastes

  • EPA (2000) Method 6010C (SW-846). Inductively Coupled Plasma—Atomic Emission Coupled Plasma—Atomic Emission Spectrometry

  • European Standard (2005) EN-ISO/IEC 17025. General requirements for the competence of testing and calibration laboratories. European Committee for Standardization

  • European Standard (2014a) EN 13946. Water quality—Guidance for the routine sampling and preparation of benthic diatoms from rivers and lakes. Brussels. European Committee for Standardization

  • European Standard (2014b) EN 14407. Water quality—guidance for the identification and enumeration of benthic diatom samples from rivers and lakes. Brussels. European Committee for Standardization

  • Falasco E, Bona F, Badino G, Hoffmann L, Ector L (2009a) Diatom teratological forms and environmental alterations: a review. Hydrobiologia 623:1–35

    Article  CAS  Google Scholar 

  • Falasco E, Bona F, Ginepro M, Hlúbiková D, Hoffmann L, Ector L (2009b) Morphological abnormalities of diatom silica walls in relation to heavy metal contamination and artificial growth conditions. Water SA 35(5):595–606

    Article  CAS  Google Scholar 

  • Falkenhayn L (2007) An assessment of the use of Bacillariophyceae as biological monitors of heavy metal pollution in Australian tropical streams. PhD thesis, University of Adelaide

  • Gold C, Feurtet-Mazel A, Coste M, Boudou A (2002) Field transfer of periphytic diatom communities to assess short-term structural effects of metals (Cd, Zn) in rivers. Water 36:3654–3664

    CAS  Google Scholar 

  • Gómez-Ortiz D, Fernández-Remolar DC, Granda A, Quesada C, Granda T, Prieto-Ballesteros O, Molina A, Amils R (2014) Identification of the subsurface sulfide bodies responsible for acidity in Río Tinto source water, Spain. Earth Planet Sci Lett 391:36–41

    Article  Google Scholar 

  • Guasch H, Leira M, Montuelle B, Geiszinger A, Roulier JL, Tornés E, Serra A (2009) Use of pollution to diatom species composition: search for the most appropriate cases and explanatory variables. Hidrobiologia 627(1):143–158

    Article  CAS  Google Scholar 

  • Hering D, Feld CK, Moog O, Ofenböck T (2006) Cook book for the development of a Multimetric Index for biological condition of aquatic ecosystems: experiences from the European AQEM and STAR projects and related initiatives. Hydrobiologia 566:311–324

    Article  Google Scholar 

  • Hirst H, Jüttner I, Ormerod SJ (2002) Comparing the responses of diatoms and macroinvertebrates to metals in upland streams of Wales and Cornwall. Freshwater Biol 47:1752–1765

    Article  CAS  Google Scholar 

  • Hlúbiková D, Hector L, Hoffman L (2011) Examination of the type material of some diatom species related to Achnanthidium minutissimum (Kütz.) Czarn. (Bacillariophyceae). Algol Stud 136/137:19–43

    Article  Google Scholar 

  • Houk V, Klee R, Tanaka H (2010) Atlas of freshwater centric diatoms with a brief key and descriptions, 3. Stephanodiscaceae A, Cyclotella, Tertiarius, Discostella. Fottea 10(Suppl):1–498

    Google Scholar 

  • John J (1993) The use of diatoms in monitoring the development of created wetland at a sandmining site in Western Australia. Hydrobiologia 269(270):427–436

    Article  Google Scholar 

  • Kim YS, Choi JS, Kim JH, Kim SC, Park JW, Kim HS (2008) The effects of effluent from a closed mine and treated sewage on epilithic diatom communities in a Korean stream. Nova Hedwigia 86:507–524

    Article  Google Scholar 

  • Kitazawa S (1995) Diatoms from inorganic acid streams, Koganezawa (Kogane Stream) and Ishido-Zawa (Ishido Stream), Nagano Prefecture. Diatom 10:91. doi:10.11464/diatom1985.10.0_91

    Article  Google Scholar 

  • Krammer K (2000) Diatoms of Europe. Volume 1: the genus Pinnularia. A.R.G. Gantner Verlag K.G., Ruggell

    Google Scholar 

  • Krammer K (2002) Diatoms of the European inland waters and comparable habitats. In: Lange-Bertalot (ed) Cymbella, vol 3. ISBN 978-3-904144-84-1

  • Krammer K (2003) Diatoms of the European Inland Waters and Comparable Habitats. In: Lange-Bertalot (ed) Cymbopleura, Delicata, Navicymbula, Gomphocymbellopsis, Afrocymbella, vol 4. Supplements to cymbelloid taxa. ISBN 978-3-904144-99-5

  • Krammer K, Lange-Bertalot H (1991) Bacillariophyceae. 4. Teil: Achnanthaceae, Kristische Ergänzungen zu Navicula (Lineolate) und Gomphonema. In: Ettl H, Gerloff J, Heynig H, Mollenhauer D (eds) Süsswasserflora von Mitteleropa 2/4. Spektrum Akademische Verlag, Leipzig

    Google Scholar 

  • Krammer K, Lange-Bertalot H (2008a) Bacillariophyceae. 2. Teil: Bacillariaceae, Epithemiaceae, Surierellaceae. In: Ettl H, Gerloff J, Heynig H, Mollenhauer D (eds) Süsswasserflora von Mitteleropa 2/2. Spektrum Akademische Verlag, Leipzig

    Google Scholar 

  • Krammer K, Lange-Bertalot H (2008b) Bacillariophyceae. 3. Teil: Centrales, Fragilariaceae, Eunotiaceae. In: Ettt H, Gerloff J, Heynig H, Mollenhauer D (eds) Süsswasserflora von Mitteleropa 2/3. Spektrum Akademische Verlag, Leipzig

    Google Scholar 

  • Krammer K, Lange-Bertalot H (2010) Bacillariophyceae. 1. Teil: Naviculaceae. In: Ettl H, Gerloff J, Heynig H, Mollenhauer D (eds) Süsswasserflora von Mitteleropa 2/1. Spektrum Akademische Verlag, Leipzig

    Google Scholar 

  • Kwandrans J (1993) Diatom communities of acidic mountain streams in Poland. Hydrobiologia 269:335–342

    Article  Google Scholar 

  • Kwandrans J (2007) Diversity and ecology of benthic diatom communities in relation to acidity, acidification and recovery of lakes and rivers. Diatom Monographs 9. Gantner Verlag KG, Ruggell

    Google Scholar 

  • Lange-Bertalot H (1993) 85 Neue Taxa und über 100 weitere neu definierte Taxa ergänzend zur Sübwasserflora von Mitteleuropa 2 (1–4). Bibliotheca Diatomologica 27:1–454

    Google Scholar 

  • Lange-Bertalot H (2001) Diatoms of Europe, volume 2: Navicula sensu stricto. 10 genera separated from Navicula sensu lato. Frustulia. A.R.G. Gantner Verlag K.G., Ruggell

    Google Scholar 

  • Lange-Bertalot H (2011) Diatoms of Europe. Volume 6: Eunotia and some related genera. A.R.G. Gantner Verlag K G, Ruggell

    Google Scholar 

  • Lange-Bertalot H, Moser G (1994) Brachysira. Monographie der Gattung und Naviculadicta nov. gen. Biblioteca Diatomologica 29:1–212

    Google Scholar 

  • Lavoie I, Lavoie M, Fortin C (2012) A mine of information: benthic algal communities as biomonitors of metal contamination from abandoned tailings. Sci Total Environ 425:231–241

    Article  CAS  Google Scholar 

  • Lessmann D, Fyson A, Nixdorf B (2000) Phytoplankton of the extremely acidic mining lakes of Lusatia (Germany) with pH < 3. Hydrobiologia 433:123–128

    Article  Google Scholar 

  • Levkov Z (2009) Diatoms of the European inland waters and comparable habitats. In: Lange-Bertalot (ed) Amphora sensu lato, vol 5. ISBN 978-3-906166-73-5

  • Levkov Z, Metzeltin D, Pavlov A (2013) Diatoms of the European inland waters and comparable habitats. In: Lange-Bertalot H (ed) Luticola and Luticulopsis, vol 7. ISBN 978-3-87429-439-3

  • Luís A, Texeira P, Almeida S, Matos JX, Ferreira da Silva E (2011) Environmental impact of mining activities in the Lousal area (Portugal): chemical and diatom characterization of metal-contaminated stream sediments and surface water of Corona stream. Sci Total Environ 409(20):4312–4325

    Article  Google Scholar 

  • Luís A, Novais MH, Van de Vijver B, Almeida S, Ferreira da Silva E, Hoffmann L, Ector L (2012) Pinnularia aljustrelica sp. nov. (Bacillariophyceae), a new diatom species found in acidic waters in the Aljustrel mining area (Portugal) and further observations on the taxonomy and ecology of P. acidophila Hofmann et Krammer and P. acoricola Hustedt. Fottea 12(1):27–40

    Article  Google Scholar 

  • Luís A, Coelho H, Almeida S, Ferreira da Silva E, Serôdio J (2013a) Photosynthetic activity and ecology of benthic diatom communities from streams affected by acid mine drainage (AMD) in pyritic mines. Fundam Appl Limnol 182(1):47–59

    Article  Google Scholar 

  • Luís A, Alexander AC, Almeida S, Ferreira da Silva E, Culp JM (2013b) Benthic diatom communities in streams from zinc mining areas in continental (Canada) and Mediterranean climates (Portugal). Water Qual Res J Can 48(2):180–191

    Article  Google Scholar 

  • Luís AT, Duräes N, Almeida S, da Silva Ferreira (2015) Integrating geochemical (surface waters, stream sediments) and biological (diatoms) approaches to assess AMD environmental impact in a pyritic mining area: Aljustre (Alentejo, Portugal). J Environ Sci, Portugal). doi:10.1016/j.jes.2015.07.008

    Google Scholar 

  • Martín G (2016) Las diatomeas del perifiton de la cuenca del Guadalquivir y sus implicaciones en el diagnóstico de la calidad del agua. PhD thesis, University of Seville

  • Martín G, Fernández MR (2012) Diatoms as indicators of water quality and ecological status: sampling, analysis and some ecological remarks. In: Dr Voudouris (ed) Ecological water quality—water treatment and reuse. InTech doi:10.5772/33831

  • Masmoudi S, Nguyen-Deroche N, Caruso A, Ayadi H, Morant-Manceau A, Tremblin G, Bertrand M, Schoefs B (2013) Cadmium, copper, sodium and zinc effects on diatoms: from heaven to hell: a review. Cryptogamie Algologie 34(2):185–225

    Article  Google Scholar 

  • Medley CN, Clements WH (1998) Responses of diatom communities to heavy metals in streams: the influence of longitudinal variation. Ecol Appl 8(3):631–644

    Article  Google Scholar 

  • Monteith DT, Evans CD (2005) The United Kingdom acid waters monitoring network: a review of the first 15 years and introduction to the special issue. Environ Pollut 137:3–13

    Article  CAS  Google Scholar 

  • Morin S, Duong TT, Dabrin A, Coynel A, Herlory O, Baudrimont M, Delmas F, Durrieu G, Schäfer J, Winterton P, Blanc G, Coste M (2008) Long-term survey of heavy-metal pollution, biofilm contamination and diatom community structure in the Riou Mort watershed, South-West France. Environ Pollut 151(3):532–542

    Article  CAS  Google Scholar 

  • Morin S, Cordonier A, Lavoie I, Arini A, Blanco S, Duong T, Tornés E, Bonet B, Corcoll N, Faggiano L, Laviale M, Péres F, Becarés E, Coste M, Feurtet-Mazel A, Fortin C, Guasch H, Sabater S (2012) Consistency in diatom response to metal-contaminated environments. In: Guasch et al (eds) Emerging and priority pollutants in rivers. Springer, Berlin. ISBN: 978-3-642-25721-6 (print), 978-3-642-25722-3 (online)

  • Morin S, Corcoll N, Bonet B, Tlili A, Guasch H (2014) Diatom responses to zinc contamination along a Mediterranean river. Plant Ecol Evol 147(3):325–332

    Article  Google Scholar 

  • Nakanishi Y, Sumita M, Yumita K, Yamada T, Honjo T (2004) Heavy-metal pollution and its state in algae in Kakehashi river and Godani river at the foot of Ogoya mine, Ishikawa Prefecture. Anal Sci 20:73–78

    Article  CAS  Google Scholar 

  • Noga T, Peszek L, Stanek-Tarkowska J, Pajączek A (2014) The Pinnularia genus in South-Eastern Poland with consideration of rare and new taxa to Poland. Oceanol Hydrobiol Stud 43(1):77–99

    Article  Google Scholar 

  • Nováková J, Poulíčková A (2004) Moss diatom (Bacillariophyceae) flora of the Nature Reserve Adršpašsko-Teplické Rocks (Czech Republic). Czech Phycol Olomouc 4:75–86

    Google Scholar 

  • Olías M, Nieto JM, Miguel A, Ruiz C (2010) La contaminación minera de los ríos Tinto y Odiel. Facultad de Ciencias Experimentales, Universidad de Huelva. http://rabida.uhu.es/dspace/bitstream/handle/10272/10038/La_contaminacion_minera.pdf?sequence=2

  • Paquin P, Santore R, Wu K, Kavvados C, Di Toro D (2000) The biotic ligand model: a model of the acute toxicity of metals to aquatic life. Environ Sci Policy 3:175–182

    Article  Google Scholar 

  • Perales-Vela H, Peña-Castro J, Cañizares-Villanueva R (2006) Heavy metal detoxification in eukaryotic microalgae. Chemosphere 64:1–10

    Article  CAS  Google Scholar 

  • Peterson CG, Stevenson RJ (1992) Resistance and resilience of lotic algal communities: importance of disturbance timing and current. Ecology 73(4):1445–1461

    Article  Google Scholar 

  • Ponader KC, Potapova MG (2007) Diatoms from the genus Achnanthidium in flowing waters of the Appalachian Mountains (North America): ecology, distribution and taxonomic notes. Limnologica 37:227–241

    Article  Google Scholar 

  • Ruggiu D, Luglie A, Cattaneo A, Panzani P (1998) Paleoecological evidence for diatom response to metal pollution in Lake Orta (N. Italy). J Paleolimnol 20:333–345

    Article  Google Scholar 

  • Sabater S (2000) Diatom communities as indicators of environmental stress in the Guadiamar River, SW Spain, following a major mine tailings spill. J Appl Phycol 12:113–124

    Article  CAS  Google Scholar 

  • Sabater S, Buchaca T, Cambra J, Catalan J, Guasch H, Ivorra N, Muñoz I, Navarro E, Real M, Romaní A (2003) Structure and function of benthic algal communities in a extremely acid river. J Phycol 39(3):481–489

    Article  CAS  Google Scholar 

  • Salonen VP, Tuovinen N, Valpola S (2006) History of mine drainage on Lake Orijärvi algal communities, SW Finland. J Paleolimnol 35(2):289–303

    Article  Google Scholar 

  • Santore R, Di Toro D, Paquin P, Meyer J (2001) Biotic ligand model of the acute toxicity of metals. Application to acute copper toxicity in freshwater fish and Daphnia. Environ Toxicol Chem 20(10):2397–2402

    Article  CAS  Google Scholar 

  • Schowe KA (2012) Diatom communities across a gradient of acid mine drainage on the West Coast, South Island, New Zealand. PhD thesis, University of Canterbury

  • Tapia PM (2008) Diatoms as bioindicators of pollution in the Mantaro River, Central Andes, Peru. Int J Environ Health 2(1):82–91

    Article  Google Scholar 

  • Urrea-Clos G, Sabater S (2009) Comparative study of algal communities in acid and alkaline waters from Tinto, Odiel and Piedras river basins (SW Spain). Limnética 28(2):261–272

    Google Scholar 

  • Valente T, Rivera MJ, Almeida S, Delgado C, Gomes P, Grande JA, de la Torre ML, Santisteban M (2015) Characterization of water reservoirs affected by acid mine drainage: geochemical, mineralogical, and biological (diatoms) properties of the water. Environ Sci and Pollut Res Int. doi: 10.1007/s11356-015-4776-0. Erratum at doi:10.1007/s11356-015-5039-9

  • Van Dam H, Mertens A, Sinkeldam J (1994) A coded checklist and ecological indicator values of freshwater diatoms from the Netherlands. J Aquat Ecol 28:117–133

    Article  Google Scholar 

  • Verb RG, Vis ML (2000a) Comparison of benthic diatom assemblages from streams draining abandoned and reclaimed coal mines and non impacted sites. J N Am Benthol Soc 19:274–288

    Article  Google Scholar 

  • Verb RG, Vis ML (2000b) Survey of benthic diatom communities from lotic systems within the Western Allengheny Plateau. J Phycol 36:68

    Article  Google Scholar 

  • Veselá J, Johansen JR (2009) The diatom flora of ephemeral headwater streams in the Elbsandsteingebirge region of the Czech Republic. Diatom Res 24:443–477

    Article  Google Scholar 

  • Zalack JT, Smucker NJ, Vis M (2010) Development of a diatom index of biotic integrity for acid mine drainage impacted streams. Ecol Indic 10:287–295

    Article  CAS  Google Scholar 

  • Zelinka M, Marvan P (1961) Zur Präzisierung der biologischen Klassification der Reinheit fliessender Gewässer. Arch Hydrobiol 57:389–407

    Google Scholar 

Download references

Acknowledgements

The authors thank the Andalusian Government for the financial support to this research. They also thank Julia Toja for her valuable contribution to the Guadiamar River assessment and Ricardo Amils, Cristina Delgado, Sergi Sabater, Saul Blanco, Dean DeNicola, and an anonymous reviewer for providing helpful bibliographic information. Finally, they thank Andrés Martín for his valuable comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. R. Fernández.

Electronic supplementary material

Below is the link to the electronic supplementary material.

244_2017_409_MOESM1_ESM.tif

Online Resource 1. Valves of the Achnanthidium minutissimum complex found in several stretches from the Tinto and Odiel Rivers (TIFF 1676 kb)

Online Resource 2. Valves of Brachysira vitrea (Grunow) Ross found in this study (TIFF 2249 kb)

Online Resource 3. Valves of Eunotia exigua (Brébisson ex Kützing) Rabenhorst found in this study (TIFF 2193 kb)

Online Resource 4. Valves of Pinnularia subcapitata Gregory found in this study (TIFF 4276 kb)

244_2017_409_MOESM5_ESM.tif

Online Resource 5. Valves of Nitzschia vasta Hustedt found in several stretches of the Tinto and Odiel Rivers. Girdle views are shown. The first three diatoms in the second row are teratological (TIFF 3001 kb)

Online Resource 6. Valves of Pinnularia acidophila Hofmann & Krammer found in this study (TIFF 2021 kb)

Online Resource 7. Valves of Pinnularia aljustrelica Luís, Almeida & Ector found in this study (TIFF 2381 kb)

Appendix

Appendix

See Table 8.

Table 8 A and F values obtained throughout the study for the calculation of ICM and ICMt in the Tinto and Odiel Basins. Teratologic forms are shaded in grey

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fernández, M.R., Martín, G., Corzo, J. et al. Design and Testing of a New Diatom-Based Index for Heavy Metal Pollution. Arch Environ Contam Toxicol 74, 170–192 (2018). https://doi.org/10.1007/s00244-017-0409-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00244-017-0409-6

Navigation