Skip to main content

Advertisement

Log in

Toxicity Assessment of Binary Metal Mixtures (Copper–Zinc) to Nitrification in Soilless Culture with the Extended Biotic Ligand Model

  • Published:
Archives of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

Metals are always found in the environment as mixtures rather than as solitary elements. Only a limited number of studies have developed appropriate models that incorporate bioavailability to estimate the toxicity of heavy-metal mixtures. In the present study, we explored the applicability of two extended biotic ligand model (BLM) approaches—BLM-f mix and BLM-toxicity unit (TU)—to predict and interpret mixture toxicity with the assumption that interactions between metal ions obey the BLM theory. Exposure assays of single and mixed metals were performed with inoculums of an ammonia-oxidizing bacterium SD5 isolated from soil. Nitrification of the cultures was the end point used to quantify the toxic response. The results indicated that the developed BLM-f mix approach could well estimate the single toxicity of Cu2+ and Zn2+ as well as their binary mixture toxicity to nitrification with >90% of toxicity variation explained. Assuming that metal ions compete with each other for binding at a single biotic ligand, the BLM-f mix approach (root-mean-square error [RMSE] = 19.66, R 2 = 0.8879) showed better predictive power than the BLM-TU approach (RMSE = 31.12, R 2 = 0.6892). The present study supports the use of the accumulation of metal ions at the biotic ligands as predictor of toxicity of single metals and metal mixtures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Borgmann U, Norwood WP, Dixon DG (2008) Modelling bioaccumulation and toxicity of metal mixtures. Hum Ecol Risk Assess 14:266–289

    Article  CAS  Google Scholar 

  • Charles J, Crini G, Degiorgi F, Sancey B, Morin-Crini N, Badot PM (2014) Unexpected toxic interactions in the freshwater amphipod Gammarus pulex (L) exposed to binary copper and nickel mixtures. Environ Sci Pollut Res 21(2):1099–1111

    Article  CAS  Google Scholar 

  • Chen Z, Zhu L, Wilkinson KJ (2010) Validation of the biotic ligand model in metal mixtures: bioaccumulation of lead and copper. Environ Sci Technol 44:3580–3586

    Article  CAS  Google Scholar 

  • Di Toro DM, Allen HE, Bergman HL, Meyer JS, Paquin PR, Santore RC (2001) Biotic ligand model of the acute toxicity of metals. 1. Technical basis. Environ Toxicol Chem 20:2383–2396

    Article  Google Scholar 

  • Erickson RJ (2013) The biotic ligand model approach for addressing effects of exposure water chemistry on aquatic toxicity of metals: genesis and challenges. Environ Toxicol Chem 32:1212–1214

    Article  CAS  Google Scholar 

  • Guine V, Spadini L, Sarret G, Muris M, Delolme C, Gaudet JP et al (2006) Zinc sorption to three gram-negative bacteria: combined titration, modeling, and EXAFS study. Environ Sci Technol 40:1806–1813

    Article  CAS  Google Scholar 

  • Hamilton MA, Russo RC, Thurston RV (1977) Trimmed Spearman–Karber method for estimating median lethal concentrations in toxicity bioassays. Environ Sci Technol 11:714–719

    Article  CAS  Google Scholar 

  • Hatano A, Shoji R (2008) Toxicity of copper and cadmium in combinations to duckweed analyzed by the biotic ligand model. Environ Toxicol 23:372–378

    Article  CAS  Google Scholar 

  • He E, Van Gestel CAM (2015) Delineating the dynamic uptake and toxicity of Ni and Co mixtures in Enchytraeus crypticus using a WHAM-Ftox approaches. Chemosphere 139:216–222

    Article  CAS  Google Scholar 

  • Holm PE, Christensen TH, Tjell TC, McGrath SP (1995) Speciation of cadmium and zinc with application to soil solutions. J Environ Qual 24:183–190

    Article  CAS  Google Scholar 

  • Hu JL, Lin XG, Chu HY, Yin R, Zhang HY, Yuan XX et al (2005) Isolation of soil ammonia-oxidizing bacteria. Soil 37(5):569–571 (Chinese)

    Google Scholar 

  • Iwasaki Y, Kamo M, Wataru N (2015) Testing an application of a biotic ligand model to predict acute toxicity of metal mixtures to rainbow trout. Environ Toxicol Chem 34(4):754–760

    Article  CAS  Google Scholar 

  • Jho EH, An J, Nam K (2011) Extended biotic ligand model for prediction of mixture toxicity of Cd and Pb using single metal toxicity data. Environ Toxicol Chem 30:1697–1703

    Article  CAS  Google Scholar 

  • Kamo M, Nagai T (2008) An application of the biotic ligand model to predict the toxic effects of metal mixtures. Environ Toxicol Chem 27:1479–1487

    Article  CAS  Google Scholar 

  • Khan FR, Keller W, Yan ND, Welsh PG, Wood CM, McGeer JC (2012) Application of biotic ligand and toxic unit modeling approaches to predict improvements in zooplankton species richness in smelter-damaged lakes near Sudbury, Ontario. Environ Sci Technol 46:1641–1649

    Article  CAS  Google Scholar 

  • Koops HP, Purkhold U, Pommerening-RoÈser A, Timmermann G, Wagner M (2003) In: Dworkin M, Falkow S, Rosenberg E, Schleifer K, Stackbrandt E (eds) The prokaryotes: an evolving electronic resource for the microbiological community, 3rd edn. Springer, New York

    Google Scholar 

  • Le TTY, Vijver MG, Hendriks Jan A, Peijnenburg WJGM (2013) Modeling toxicity of binary metal mixtures (Cu2+–Ag+, Cu) to lettuce, Lactuca sativa, with the biotic ligand model. Environ Toxicol Chem 32:137–143

    Article  Google Scholar 

  • Liu Y, Vijver MG, Peijnenburg WJGM (2014) Comparing three approaches in extending biotic ligand models to predict the toxicity of binary metal mixtures (Cu–Ni, Cu–Zn and Cu–Ag) to lettuce (Lactuca sativa L.). Chemosphere 112:282–288

    Article  CAS  Google Scholar 

  • Lock K, Janssen CR (2002) Mixture toxicity of zinc, cadmium, copper, and lead to the pot worm Enchytraeus albidus. Ecotoxicol Environ Saf 52:1–7

    Article  CAS  Google Scholar 

  • Mertens J, Degryse F, Springael D, Smolders E (2007) Zinc toxicity to nitrification in soil and soilless culture can be predicted with the same biotic ligand model. Environ Sci Technol 41(8):2992–2997

    Article  CAS  Google Scholar 

  • Meyer JS, Ranville JF, Pontash M, Gorsuch JW, Adams WJ (2015) Acute toxicity of binary and ternary mixtures of Cd, Cu, and Zn to Daphnia magna. Environ Toxicol Chem 34:799–808

    Article  CAS  Google Scholar 

  • Niyogi S, Wood CM (2004) Biotic ligand model, a flexible tool for developing site-specific water quality guidelines for metals. Environ Sci Technol 38:6177–6192

    Article  CAS  Google Scholar 

  • Qiu H, Vijver MG, Peijnenburg WJGM (2011) Interactions of cadmium and zinc impact their toxicity to the earthworm Aporrectodea caliginosa. Environ Toxicol Chem 30:2084–2093

    Article  CAS  Google Scholar 

  • Qiu H, Vijver MG, He E, Liu Y, Wang P, Xia B et al (2015) Incorporating bioavailability into toxicity assessment of Cu–Ni, Cu–Cd, and Ni–Cd mixtures with the extended biotic ligand model and the WHAM-F tox approach. Environ Sci Pollut Res 22(23):19213–19223

    Article  CAS  Google Scholar 

  • Santore RC, Ryan AC (2015) Development and application of a multi-metal multi-biotic ligand model for assessing aquatic toxicity of metal mixtures. Environ Toxicol Chem 34:777–787

    Article  CAS  Google Scholar 

  • Slaveykova VI, Wilkinson KJ (2005) Predicting the bioavailability of metals and metal complexes: critical review of the biotic ligand model. Environ Chem 2:9–24

    Article  CAS  Google Scholar 

  • Smolders E, Buekers J, Oliver I, McLaughlin MJ (2004) Soil properties affecting toxicity of zinc to soil microbial properties in laboratory-spiked and field-contaminated soils. Environ Toxicol Chem 23:2633–2640

    Article  CAS  Google Scholar 

  • Thakali S, Allen HE, Di Toro DM, Ponizovsky AA, Rooney CP, Zhao FJ et al (2006) A terrestrial biotic ligand model I: development and initial application to Cu and Ni toxicities o barley root elongation in soils. Environ Sci Technol 40(22):7085–7093

    Article  CAS  Google Scholar 

  • Vijver MG, Peijnenburg WJGM, De Snoo GR (2010) Toxicological mixture models are based on inadequate assumptions. Environ Sci Technol 44:4841–4842

    Article  CAS  Google Scholar 

  • Wilson DO (1977) Nitrification in three soils amended with zinc sulphate. Soil Biol Biochem 9:277–280

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The study was supported by the National Natural Science Foundation of China (Grant No. 41671322), the Shandong Province Natural Fund (Grant No. 2015ZRB01615), and National Key Research and Development Project of China (Grant No. 2016YFD0800304).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, A., Li, J., Li, M. et al. Toxicity Assessment of Binary Metal Mixtures (Copper–Zinc) to Nitrification in Soilless Culture with the Extended Biotic Ligand Model. Arch Environ Contam Toxicol 72, 312–319 (2017). https://doi.org/10.1007/s00244-016-0346-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00244-016-0346-9

Keywords

Navigation