Skip to main content

Advertisement

Log in

Molecular basis of primary hyperoxaluria: clues to innovative treatments

  • Invited Review
  • Published:
Urolithiasis Aims and scope Submit manuscript

Abstract

Primary hyperoxalurias (PHs) are rare inherited disorders of liver glyoxylate metabolism, characterized by the abnormal production of endogenous oxalate, a metabolic end-product that is eliminated by urine. The main symptoms are related to the precipitation of calcium oxalate crystals in the urinary tract with progressive renal damage and, in the most severe form named Primary Hyperoxaluria Type I (PH1), to systemic oxalosis. The therapies currently available for PH are either poorly effective, because they address the symptoms and not the causes of the disease, or highly invasive. In the last years, advances in our understanding of the molecular bases of PH have paved the way for the development of new therapeutic strategies. They include (i) substrate-reduction therapies based on small-molecule inhibitors or the RNA interference technology, (ii) gene therapy, (iii) enzyme administration approaches, (iv) colonization with oxalate-degrading intestinal microorganisms, and, in PH1, (v) design of pharmacological chaperones. This paper reviews the basic principles of these new therapeutic strategies and what is currently known about their application to PH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Alagia A, Eritja R (2016) siRNA and RNAi optimization Wiley. Interdiscip Rev RNA 7:316–329. https://doi.org/10.1002/wrna.1337

    Article  CAS  PubMed  Google Scholar 

  2. Alegra T, Vairo F, de Souza MV, Krug BC, Schwartz IV (2012) Enzyme replacement therapy for Fabry disease: a systematic review and meta-analysis. Genet Mol Biol 35:947–954

    Article  CAS  Google Scholar 

  3. Allison MJ, Dawson KA, Mayberry WR, Foss JG (1985) Oxalobacter formigenes gen. nov., sp. nov.: oxalate-degrading anaerobes that inhabit the gastrointestinal tract. Arch Microbiol 141:1–7

    Article  CAS  Google Scholar 

  4. Andy V, Horvath P, Wanders RJ (1995) Aminooxy acetic acid: a selective inhibitor of alanine:glyoxylate aminotransferase and its use in the diagnosis of primary hyperoxaluria type I Clinica chimica acta. Int J Clin Chem 243:105–114

    CAS  Google Scholar 

  5. Arvans D et al (2017) Oxalobacter formigenes-derived bioactive factors stimulate oxalate transport by intestinal epithelial cells. J Am Soc Nephrol JASN 28:876–887. https://doi.org/10.1681/ASN.2016020132

    Article  CAS  PubMed  Google Scholar 

  6. Asplin JR (2002) Hyperoxaluric calcium nephrolithiasis Endocrinology. and metabolism clinics of North America 31:927–949

    Article  CAS  Google Scholar 

  7. Beck BB et al (2013) Novel findings in patients with primary hyperoxaluria type III and implications for advanced molecular testing strategies European. J Hum Genet EJHG 21:162–172. https://doi.org/10.1038/ejhg.2012.139

    Article  CAS  Google Scholar 

  8. Beck BB et al (2012) Liver cell transplantation in severe infantile oxalosis–a potential bridging procedure to orthotopic liver transplantation? Nephrology, dialysis, transplantation: official publication of the European Dialysis and Transplant Association. Eur Renal Assoc 27:2984–2989. https://doi.org/10.1093/ndt/gfr776

    Article  CAS  Google Scholar 

  9. Beck BB, Hoyer-Kuhn H, Gobel H, Habbig S, Hoppe B (2013) Hyperoxaluria and systemic oxalosis: an update on current therapy and future directions Expert opinion on investigational. Drugs 22:117–129 https://doi.org/10.1517/13543784.2013.741587

    Article  CAS  Google Scholar 

  10. Belostotsky R, Pitt JJ, Frishberg Y (2012) Primary hyperoxaluria type III–a model for studying perturbations in glyoxylate metabolism. J Mol Med 90:1497–1504. https://doi.org/10.1007/s00109-012-0930-z

    Article  CAS  PubMed  Google Scholar 

  11. Ben-Shalom E, Frishberg Y (2015) Primary hyperoxalurias: diagnosis and treatment Pediatric Nephrology 30:1781–1791 https://doi.org/10.1007/s00467-014-3030-1

    Article  Google Scholar 

  12. Booth MP, Conners R, Rumsby G, Brady RL (2006) Structural basis of substrate specificity in human glyoxylate reductase/hydroxypyruvate reductase. J Mol Biol 360:178–189. https://doi.org/10.1016/j.jmb.2006.05.018

    Article  CAS  PubMed  Google Scholar 

  13. Bourhis JM, Vignaud C, Pietrancosta N, Gueritte F, Guenard D, Lederer F, Lindqvist Y (2009) Structure of human glycolate oxidase in complex with the inhibitor 4-carboxy-5-[(4-chlorophenyl)sulfanyl]-1,2,3-thiadiazole Acta crystallographica Section F. Struct Biol Cryst Commun 65:1246–1253. https://doi.org/10.1107/S1744309109041670

    Article  CAS  Google Scholar 

  14. Carrasco A Jr, Granberg CF, Gettman MT, Milliner DS, Krambeck AE (2015) Surgical management of stone disease in patients with primary hyperoxaluria Urology 85:522–526. https://doi.org/10.1016/j.urology.2014.11.018

    Article  PubMed  PubMed Central  Google Scholar 

  15. Castello R, Borzone R, D’Aria S, Annunziata P, Piccolo P, Brunetti-Pierri N (2016) Helper-dependent adenoviral vectors for liver-directed gene therapy of primary hyperoxaluria type 1. Gene therapy 23:129–134. https://doi.org/10.1038/gt.2015.107

    Article  CAS  PubMed  Google Scholar 

  16. Cellini B (2017) Treatment options in primary hyperoxaluria Type I Expert Opin Orphan Drugs 5:11. https://doi.org/10.1080/21678707.2017.1298439

    Article  CAS  Google Scholar 

  17. Cellini B, Bertoldi M, Montioli R, Paiardini A, Borri Voltattorni C (2007) Human wild-type alanine:glyoxylate aminotransferase and its naturally occurring G82E variant: functional properties and physiological implications. Biochem J 408:39–50. https://doi.org/10.1042/BJ20070637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cellini B et al (2010) Molecular defects of the glycine 41 variants of alanine glyoxylate aminotransferase associated with primary hyperoxaluria type I Proc Natl Acad Sci U S A 107:2896–2901. https://doi.org/10.1073/pnas.0908565107

    Article  PubMed  PubMed Central  Google Scholar 

  19. Cellini B, Montioli R, Paiardini A, Lorenzetto A, Voltattorni CB (2009) Molecular insight into the synergism between the minor allele of human liver peroxisomal alanine:glyoxylate aminotransferase and the F152I mutation. J Biol Chem 284:8349–8358. https://doi.org/10.1074/jbc.M808965200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cellini B, Montioli R, Voltattorni CB (2011) Human liver peroxisomal alanine:glyoxylate aminotransferase: characterization of the two allelic forms and their pathogenic variants Biochimica. et biophysica acta 1814:1577–1584. https://doi.org/10.1016/j.bbapap.2010.12.005

    Article  CAS  PubMed  Google Scholar 

  21. Cellini B, Oppici E, Paiardini A, Montioli R (2012) Molecular insights into primary hyperoxaluria type 1 pathogenesis. Front Biosci 17:621–634

    Article  CAS  Google Scholar 

  22. Chiti F, Dobson CM (2017) Protein misfolding, amyloid formation, and human disease: a summary of progress over the last decade annual. Rev Biochem 86:27–68. https://doi.org/10.1146/annurev-biochem-061516-045115

    Article  CAS  Google Scholar 

  23. Ciechanover A, Kwon YT (2017) Protein quality control by molecular chaperones in neurodegeneration Front Neurosci 11:185 https://doi.org/10.3389/fnins.2017.00185

    Article  PubMed  PubMed Central  Google Scholar 

  24. Cochat P, Fargue S, Harambat J (2010) Primary hyperoxaluria type 1: strategy for organ transplantation Curr Opin Organ Transpl 15:590–593. https://doi.org/10.1097/MOT.0b013e32833e35f5

    Article  Google Scholar 

  25. Cochat P, Groothoff J (2013) Primary hyperoxaluria type 1: practical and ethical issues Pediatric Nephrol 28:2273–2281 https://doi.org/10.1007/s00467-013-2444-5

    Article  Google Scholar 

  26. Cochat P et al (2012) Primary hyperoxaluria Type 1: indications for screening and guidance for diagnosis and treatment Nephrol Dial Transpl 27:1729–1736. https://doi.org/10.1093/ndt/gfs078

    Article  CAS  Google Scholar 

  27. Cochat P, Rumsby G (2013) Primary hyperoxaluria N Engl J Med 369:649–658. https://doi.org/10.1056/NEJMra1301564

    Article  CAS  PubMed  Google Scholar 

  28. Coulter-Mackie MB, Lian Q (2006) Consequences of missense mutations for dimerization and turnover of alanine:glyoxylate aminotransferase: study of a spectrum of mutations Mol Genet Metab 89:349–359. https://doi.org/10.1016/j.ymgme.2006.07.013

    Article  CAS  PubMed  Google Scholar 

  29. Coulter-Mackie MB, Lian Q (2008) Partial trypsin digestion as an indicator of mis-folding of mutant alanine:glyoxylate aminotransferase and chaperone effects of specific ligands. Study of a spectrum of missense mutants Mol Genet Metab 94:368–374. https://doi.org/10.1016/j.ymgme.2008.03.010

    Article  CAS  PubMed  Google Scholar 

  30. Coutinho MF, Santos JI, Alves S (2016) Less is more: substrate reduction therapy for lysosomal storage disorders. Int J Mol Sci 17, 1065 https://doi.org/10.3390/ijms18010178

    Article  PubMed Central  Google Scholar 

  31. Cramer SD, Ferree PM, Lin K, Milliner DS, Holmes RP (1999) The gene encoding hydroxypyruvate reductase (GRHPR) is mutated in patients with primary hyperoxaluria type II. Hum Mol Genet 8:2063–2069

    Article  CAS  Google Scholar 

  32. Cregeen DP, Williams EL, Hulton S, Rumsby G (2003) Molecular analysis of the glyoxylate reductase (GRHPR) gene and description of mutations underlying primary hyperoxaluria type 2. Hum Mutat 22:497. https://doi.org/10.1002/humu.9200

    Article  CAS  PubMed  Google Scholar 

  33. Dahiya T, Pundir CS (2013) In vivo oxalate degradation by liposome encapsulated oxalate oxidase in rat model of hyperoxaluria. Indian J Med Res 137:136–141

    PubMed  PubMed Central  Google Scholar 

  34. Danpure CJ (2006) Primary hyperoxaluria type 1: AGT mistargeting highlights the fundamental differences between the peroxisomal and mitochondrial protein import pathways Biochimica. et biophysica acta 1763:1776–1784. https://doi.org/10.1016/j.bbamcr.2006.08.021

    Article  CAS  PubMed  Google Scholar 

  35. Danpure CJ, Jennings PR (1986) Peroxisomal alanine:glyoxylate aminotransferase deficiency in primary hyperoxaluria type I. FEBS Lett 201:20–24

    Article  CAS  Google Scholar 

  36. Das AM (2017) Clinical utility of nitisinone for the treatment of hereditary tyrosinemia type-1 (HT-1) Appl Clin Genet 10:43–48 https://doi.org/10.2147/TACG.S113310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Dhondup T, Lorenz EC, Milliner DS, Lieske JC (2018) Combined liver-kidney transplantation for primary hyperoxaluria type 2: a case report Am J Transpl 18:253–257. https://doi.org/10.1111/ajt.14418

    Article  CAS  Google Scholar 

  38. Dindo M, Conter C, Cellini B (2017) Electrostatic interactions drive native-like aggregation of human alanine:glyoxylate aminostransferase. The FEBS J 284:3739–3764. https://doi.org/10.1111/febs.14269

    Article  CAS  PubMed  Google Scholar 

  39. Dindo M, Montioli R, Busato M, Giorgetti A, Cellini B, Borri Voltattorni C (2016) Effects of interface mutations on the dimerization of alanine glyoxylate aminotransferase and implications in the mistargeting of the pathogenic variants F152I and I244T Biochimie 131:137–148 https://doi.org/10.1016/j.biochi.2016.10.001

    Article  CAS  PubMed  Google Scholar 

  40. Dindo M, Oppici E, Dell’Orco D, Montone R, Cellini B (2018) Correlation between the molecular effects of mutations at the dimer interface of alanine-glyoxylate aminotransferase leading to primary hyperoxaluria type I and the cellular response to vitamin B6. J Inherit Metab Dis 41:263–275. https://doi.org/10.1007/s10545-017-0105-8

    Article  CAS  PubMed  Google Scholar 

  41. Dutta C et al (2016) Inhibition of glycolate oxidase with dicer-substrate siRNA reduces calcium oxalate deposition in a mouse model of primary hyperoxaluria type 1 Mol Ther J Am Soc Gene Ther 24:770–778. https://doi.org/10.1038/mt.2016.4

    Article  CAS  Google Scholar 

  42. Fu Y, Rope R, Fargue S, Cohen HT, Holmes RP, Cohen DM (2015) A mutation creating an out-of-frame alternative translation initiation site in the GRHPR 5′UTR causing primary hyperoxaluria type II Clin Genet 88:494–498. https://doi.org/10.1111/cge.12541

    Article  CAS  PubMed  Google Scholar 

  43. Gamboa-Vujicic G, Emma DA, Liao SY, Fuchtner C, Manetta A (1993) Toxicity of the mitochondrial poison dequalinium chloride in a murine model system. Journal of pharmaceutical sciences 82:231–235

    Article  CAS  Google Scholar 

  44. Giafi CF, Rumsby G (1998) Kinetic analysis and tissue distribution of human D-glycerate dehydrogenase/glyoxylate reductase and its relevance to the diagnosis of primary hyperoxaluria type 2 Ann Clin Biochem 35 (Pt 1):104–109 https://doi.org/10.1177/000456329803500114

    Article  CAS  PubMed  Google Scholar 

  45. Grujic D et al (2009) Hyperoxaluria is reduced and nephrocalcinosis prevented with an oxalate-degrading enzyme in mice with hyperoxaluria. Am J Nephrol 29:86–93. https://doi.org/10.1159/000151395

    Article  CAS  PubMed  Google Scholar 

  46. Guerard N et al (2018) Lucerastat, an iminosugar for substrate reduction therapy: tolerability, pharmacodynamics, and pharmacokinetics in patients with fabry disease on enzyme replacement. Clin Pharmacol Ther 103:703–711. https://doi.org/10.1002/cpt.790

    Article  CAS  PubMed  Google Scholar 

  47. Harambat J et al (2010) Genotype-phenotype correlation in primary hyperoxaluria type 1: the p.Gly170Arg AGXT mutation is associated with a better outcome. Kidney Int 77:443–449. https://doi.org/10.1038/ki.2009.435

    Article  CAS  PubMed  Google Scholar 

  48. Harambat J, Fargue S, Bacchetta J, Acquaviva C, Cochat P (2011) Primary hyperoxaluria Int J Nephrol 2011:864580. https://doi.org/10.4061/2011/864580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hatch M, Freel RW (2008) The roles and mechanisms of intestinal oxalate transport in oxalate homeostasis. Semin Nephrol 28:143–151. https://doi.org/10.1016/j.semnephrol.2008.01.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hatch M, Freel RW (2013) A human strain of Oxalobacter (HC-1) promotes enteric oxalate secretion in the small intestine of mice and reduces urinary oxalate excretion Urolithiasis 41:379–384. https://doi.org/10.1007/s00240-013-0601-8

    Article  CAS  PubMed  Google Scholar 

  51. Hatch M, Gjymishka A, Salido EC, Allison MJ, Freel RW (2011) Enteric oxalate elimination is induced and oxalate is normalized in a mouse model of primary hyperoxaluria following intestinal colonization with Oxalobacter Am J Physiol Gastrointest Liver Physiol 300:G461-469 https://doi.org/10.1152/ajpgi.00434.2010

    Article  CAS  Google Scholar 

  52. Hipp MS, Park SH, Hartl FU (2014) Proteostasis impairment in protein-misfolding and -aggregation diseases Trends Cell Biol 24:506–514. https://doi.org/10.1016/j.tcb.2014.05.003

    Article  CAS  PubMed  Google Scholar 

  53. Holmes RP, Assimos DG (1998) Glyoxylate synthesis, and its modulation and influence on oxalate synthesis. J Urol 160:1617–1624

    Article  CAS  Google Scholar 

  54. Holmes RP, Assimos DG, Wilson DM, Milliner DS (2001) (L)-2-oxothiazolidine-4-carboxylate in the treatment of primary hyperoxaluria type 1. BJU Int 88:858–862

    Article  CAS  Google Scholar 

  55. Hoppe B (2012) An update on primary hyperoxaluria. Nature reviews Nephrology 8:467–475. https://doi.org/10.1038/nrneph.2012.113

    Article  CAS  PubMed  Google Scholar 

  56. Hoppe B et al (2006) Oxalobacter formigenes: a potential tool for the treatment of primary hyperoxaluria type 1. Kidney Int 70:1305–1311. https://doi.org/10.1038/sj.ki.5001707

    Article  CAS  PubMed  Google Scholar 

  57. Hoppe B, Dittlich K, Fehrenbach H, Plum G, Beck BB (2011) Reduction of plasma oxalate levels by oral application of Oxalobacter formigenes in 2 patients with infantile oxalosis. Am J Kidney Dis 58:453–455. https://doi.org/10.1053/j.ajkd.2011.05.012

    Article  PubMed  Google Scholar 

  58. Hoppe B et al (2011) Efficacy and safety of Oxalobacter formigenes to reduce urinary oxalate in primary hyperoxaluria Nephrol Dial Transpl 26:3609–3615. https://doi.org/10.1093/ndt/gfr107

    Article  Google Scholar 

  59. Hoyer-Kuhn H, Kohbrok S, Volland R, Franklin J, Hero B, Beck BB, Hoppe B (2014) Vitamin B6 in primary hyperoxaluria I: first prospective trial after 40 years of practice. Clin J Am Soc Nephrol CJASN 9:468–477. https://doi.org/10.2215/CJN.06820613

    Article  PubMed  Google Scholar 

  60. Karaolanis G, Lionaki S, Moris D, Palla VV, Vernadakis S (2014) Secondary hyperoxaluria: a risk factor for kidney stone formation and renal failure in native kidneys and renal grafts Transpl Rev 28:182–187 https://doi.org/10.1016/j.trre.2014.05.004

    Article  Google Scholar 

  61. Katerina Pierzynowska K 1D, Stefan G. Pierzynowski 1,2,3(ACHF), Paper O, Liudamyla Lozinska 1 D, Sara Jarmakiewicz 5(DEFG), Paulina Świeboda 1(BCDE), Olexandr Fedkiv 1(BC) KSB, Jose Louis Valverde Piedra 3(BC), Filip R (2017) The influence of oxalate decarboxylase on the urinary oxalate excretion in swine model of nephrocalcinosis induced by hydroxyproline. Eur J Clin Exp Med 15:11. https://doi.org/10.15584/ejcem.2017.3.4

  62. Klimesova K, Whittamore JM, Hatch M (2015) Bifidobacterium animalis subsp. lactis decreases urinary oxalate excretion in a mouse model of primary hyperoxaluria Urolithiasis 43:107–117. https://doi.org/10.1007/s00240-014-0728-2

    Article  CAS  PubMed  Google Scholar 

  63. Knight J, Jiang J, Assimos DG, Holmes RP (2006) Hydroxyproline ingestion and urinary oxalate and glycolate excretion. Kidney Int 70:1929–1934. https://doi.org/10.1038/sj.ki.5001906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Langman CB, Grujic D, Pease RM, Easter L, Nezzer J, Margolin A, Brettman L (2016) A double-blind, placebo controlled, randomized phase 1 cross-over study with ALLN-177, an orally administered oxalate degrading enzyme. Am J Nephrol 44:150–158. https://doi.org/10.1159/000448766

    Article  CAS  PubMed  Google Scholar 

  65. Lee E, Jeong BC, Park YH, Kim HH (2014) Expression of the gene encoding oxalate decarboxylase from Bacillus subtilis and characterization of the recombinant enzyme. BMC Res Notes 7:598. https://doi.org/10.1186/1756-0500-7-598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Li X et al (2016) Metabolism of (13)C5-hydroxyproline in mouse models of Primary Hyperoxaluria and its inhibition by RNAi therapeutics targeting liver glycolate oxidase and hydroxyproline dehydrogenase Biochimica. et biophysica acta 1862:233–239. https://doi.org/10.1016/j.bbadis.2015.12.001

    Article  CAS  PubMed  Google Scholar 

  67. Liebow A et al (2016) An investigational RNAi therapeutic targeting glycolate oxidase reduces oxalate production in models of primary hyperoxaluria. J Am Soc Nephrol JASN. https://doi.org/10.1681/ASN.2016030338

    Article  PubMed  Google Scholar 

  68. Lieske JC, Tremaine WJ, De Simone C, O’Connor HM, Li X, Bergstralh EJ, Goldfarb DS (2010) Diet, but not oral probiotics, effectively reduces urinary oxalate excretion and calcium oxalate supersaturation. Kidney Int 78:1178–1185. https://doi.org/10.1038/ki.2010.310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Lumb MJ, Danpure CJ (2000) Functional synergism between the most common polymorphism in human alanine:glyoxylate aminotransferase and four of the most common disease-causing mutations. J Biol Chem 275:36415–36422. https://doi.org/10.1074/jbc.M006693200

    Article  CAS  PubMed  Google Scholar 

  70. M’Dimegh S et al (2017) HOGA1 gene mutations of primary hyperoxaluria Type 3 in Tunisian patients J Clini Lab Anal 31 https://doi.org/10.1002/jcla.22053

  71. Madoux F et al (2015) Development of a phenotypic high-content assay to identify pharmacoperone drugs for the treatment of primary hyperoxaluria type 1 by high-throughput screening. Assay Drug Dev Technol 13:16–24. https://doi.org/10.1089/adt.2014.627

    Article  CAS  PubMed  Google Scholar 

  72. Martin-Higueras C, Luis-Lima S, Salido E (2016) Glycolate oxidase is a safe and efficient target for substrate reduction therapy in a mouse model of primary Hyperoxaluria Type I Mol Ther J Am Soc Gene Ther 24:719–725. https://doi.org/10.1038/mt.2015.224

    Article  CAS  Google Scholar 

  73. Mdluli K, Booth MP, Brady RL, Rumsby G (2005) A preliminary account of the properties of recombinant human Glyoxylate reductase (GRHPR), LDHA and LDHB with glyoxylate, and their potential roles in its metabolism Biochimica. et Biophysica Acta 1753:209–216. https://doi.org/10.1016/j.bbapap.2005.08.004

    Article  CAS  PubMed  Google Scholar 

  74. Mesa-Torres N, Fabelo-Rosa I, Riverol D, Yunta C, Albert A, Salido E, Pey AL (2013) The role of protein denaturation energetics and molecular chaperones in the aggregation and mistargeting of mutants causing primary hyperoxaluria type I PloS One 8:e71963. https://doi.org/10.1371/journal.pone.0071963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Mesa-Torres N, Salido E, Pey AL (2014) The lower limits for protein stability and foldability in primary hyperoxaluria type I Biochimica. et biophysica Acta 1844:2355–2365. https://doi.org/10.1016/j.bbapap.2014.10.010

    Article  CAS  PubMed  Google Scholar 

  76. Mesa-Torres N, Tomic N, Albert A, Salido E, Pey AL (2015) Molecular recognition of PTS-1 cargo proteins by Pex5p: implications for protein mistargeting in primary hyperoxaluria. Biomolecules 5:121–141. https://doi.org/10.3390/biom5010121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Mesa-Torres N et al (2014) The consensus-based approach for gene/enzyme replacement therapies and crystallization strategies: the case of human alanine-glyoxylate aminotransferase. Biochem J 462:453–463. https://doi.org/10.1042/BJ20140250

    Article  CAS  PubMed  Google Scholar 

  78. Milliner D, Hoppe B, Groothoff J (2017) A randomised Phase II/III study to evaluate the efficacy and safety of orally administered Oxalobacter formigenes to treat primary hyperoxaluria Urolithiasis https://doi.org/10.1007/s00240-017-0998-6

    Article  PubMed  PubMed Central  Google Scholar 

  79. Miyata N, Steffen J, Johnson ME, Fargue S, Danpure CJ, Koehler CM (2014) Pharmacologic rescue of an enzyme-trafficking defect in primary hyperoxaluria 1. Proc Natl Acad Sci USA 111:14406–14411. https://doi.org/10.1073/pnas.1408401111

    Article  CAS  PubMed  Google Scholar 

  80. Monico CG et al (2011) Primary hyperoxaluria type III gene HOGA1 (formerly DHDPSL) as a possible risk factor for idiopathic calcium oxalate urolithiasis. Clin J Am Soc Nephrol CJASN 6:2289–2295. https://doi.org/10.2215/CJN.02760311

    Article  CAS  PubMed  Google Scholar 

  81. Monico CG, Rossetti S, Olson JB, Milliner DS (2005) Pyridoxine effect in type I primary hyperoxaluria is associated with the most common mutant allele. Kidney Int 67:1704–1709. https://doi.org/10.1111/j.1523-1755.2005.00267.x

    Article  CAS  PubMed  Google Scholar 

  82. Montioli R, Oppici E, Dindo M, Roncador A, Gotte G, Cellini B, Borri Voltattorni C (2015) Misfolding caused by the pathogenic mutation G47R on the minor allele of alanine:glyoxylate aminotransferase and chaperoning activity of pyridoxine Biochimica. et biophysica acta 1854:1280–1289. https://doi.org/10.1016/j.bbapap.2015.07.002

    Article  CAS  PubMed  Google Scholar 

  83. Mufarrij PW, Lange JN, Knight J, Assimos DG, Holmes RP (2013) The effects of Oxazyme on oxalate degradation: results and implications of in vitro experiments. J Endourol 27:284–287. https://doi.org/10.1089/end.2012.0214

    Article  PubMed  Google Scholar 

  84. Murray MS, Holmes RP, Lowther WT (2008) Active site and loop 4 movements within human glycolate oxidase: implications for substrate specificity and drug design Biochemistry 47:2439–2449. https://doi.org/10.1021/bi701710r

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Nazzal L, Puri S, Goldfarb DS (2016) Enteric hyperoxaluria: an important cause of end-stage kidney disease Nephrol Dial Transpl 31:375–382. https://doi.org/10.1093/ndt/gfv005

    Article  Google Scholar 

  86. Oppici E, Fargue S, Reid ES, Mills PB, Clayton PT, Danpure CJ, Cellini B (2015) Pyridoxamine and pyridoxal are more effective than pyridoxine in rescuing folding-defective variants of human alanine:glyoxylate aminotransferase causing primary hyperoxaluria type I. Hum Mol Genet 24:5500–5511. https://doi.org/10.1093/hmg/ddv276

    Article  CAS  PubMed  Google Scholar 

  87. Oppici E, Montioli R, Cellini B (2015) Liver peroxisomal alanine:glyoxylate aminotransferase and the effects of mutations associated with Primary Hyperoxaluria Type I: an overview Biochimica. et biophysica acta 1854:1212–1219. https://doi.org/10.1016/j.bbapap.2014.12.029

    Article  CAS  PubMed  Google Scholar 

  88. Oppici E, Montioli R, Dindo M, Cellini B (2016) Natural and unnatural compounds rescue folding defects of human alanine:glyoxylate aminotransferase leading to Primary Hyperoxaluria Type I Curr Drug Targets 17:1482–1491

    Article  Google Scholar 

  89. Oppici E et al (2015) The chaperoning activity of amino-oxyacetic acid on folding-defective variants of human alanine:glyoxylate aminotransferase causing primary hyperoxaluria type I. ACS Chem Biol 10:2227–2236. https://doi.org/10.1021/acschembio.5b00480

    Article  CAS  PubMed  Google Scholar 

  90. Peck AB, Canales BK, Nguyen CQ (2016) Oxalate-degrading microorganisms or oxalate-degrading enzymes: which is the future therapy for enzymatic dissolution of calcium-oxalate uroliths in recurrent stone disease? Urolithiasis 44:45–50. https://doi.org/10.1007/s00240-015-0845-6

    Article  CAS  PubMed  Google Scholar 

  91. Pey AL, Albert A, Salido E (2013) Protein homeostasis defects of alanine-glyoxylate aminotransferase: new therapeutic strategies in primary hyperoxaluria type I BioMed research international 2013:687658 https://doi.org/10.1155/2013/687658

  92. Pey AL, Salido E, Sanchez-Ruiz JM (2011) Role of low native state kinetic stability and interaction of partially unfolded states with molecular chaperones in the mitochondrial protein mistargeting associated with primary hyperoxaluria. Amino Acids 41:1233–1245. https://doi.org/10.1007/s00726-010-0801-2

    Article  CAS  PubMed  Google Scholar 

  93. Powers ET, Morimoto RI, Dillin A, Kelly JW, Balch WE (2009) Biological and chemical approaches to diseases of proteostasis deficiency Ann Rev Biochem 78:959–991. https://doi.org/10.1146/annurev.biochem.052308.114844

    Article  CAS  PubMed  Google Scholar 

  94. Purdue PE, Lumb MJ, Allsop J, Danpure CJ (1991) An intronic duplication in the alanine: glyoxylate aminotransferase gene facilitates identification of mutations in compound heterozygote patients with primary hyperoxaluria type 1. Hum Genet 87:394–396

    Article  CAS  Google Scholar 

  95. Riedel TJ, Knight J, Murray MS, Milliner DS, Holmes RP, Lowther WT (2012) 4-Hydroxy-2-oxoglutarate aldolase inactivity in primary hyperoxaluria type 3 and glyoxylate reductase inhibition Biochimica. et Biophysica Acta 1822:1544–1552. https://doi.org/10.1016/j.bbadis.2012.06.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Ringe D, Petsko GA (2009) What are pharmacological chaperones and why are they interesting? J Biol 8:80. https://doi.org/10.1186/jbiol186

    Article  PubMed  PubMed Central  Google Scholar 

  97. Robijn S, Hoppe B, Vervaet BA, D’Haese PC, Verhulst A (2011) Hyperoxaluria: a gut-kidney axis? Kidney Int 80:1146–1158. https://doi.org/10.1038/ki.2011.287

    Article  CAS  PubMed  Google Scholar 

  98. Rokka A et al (2009) Pxmp2 is a channel-forming protein in Mammalian peroxisomal membrane PloS One 4:e5090 https://doi.org/10.1371/journal.pone.0005090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Roncador A et al (2016) Use of polymer conjugates for the intraperoxisomal delivery of engineered human alanine:glyoxylate aminotransferase as a protein therapy for primary hyperoxaluria type I Nanomedicine https://doi.org/10.1016/j.nano.2016.12.011

    Article  PubMed  Google Scholar 

  100. Roncador A, Oppici E, Montioli R Maset F, Cellini B (2013) TAT-mediated delivery of human alanine:glyoxylate aminotransferase in a cellular model of primary hyperoxaluria type I Int J Pept Res Ther 19:10. https://doi.org/10.1007/s10989-012-9333-9

    Article  CAS  Google Scholar 

  101. Rumsby G, Cregeen DP (1999) Identification and expression of a cDNA for human hydroxypyruvate/glyoxylate reductase Biochimica. et biophysica acta 1446:383–388

    Article  CAS  Google Scholar 

  102. Salido E, Pey AL, Rodriguez R, Lorenzo V (2012) Primary hyperoxalurias: disorders of glyoxylate detoxification Biochimica. et biophysica acta 1822:1453–1464. https://doi.org/10.1016/j.bbadis.2012.03.004

    Article  CAS  PubMed  Google Scholar 

  103. Salido E, Rodriguez-Pena M, Santana A, Beattie SG, Petry H, Torres A (2011) Phenotypic correction of a mouse model for primary hyperoxaluria with adeno-associated virus gene transfer Mol Ther J Am Soc Gene Ther 19:870–875. https://doi.org/10.1038/mt.2010.270

    Article  CAS  Google Scholar 

  104. Sarkissian CN, Gamez A (2005) Phenylalanine ammonia lyase, enzyme substitution therapy for phenylketonuria, where are we now? Mol Gen Metab 86 Suppl 1:S22–26 https://doi.org/10.1016/j.ymgme.2005.06.016

    Article  CAS  Google Scholar 

  105. Shemesh E, Deroma L, Bembi B, Deegan P, Hollak C, Weinreb NJ, Cox TM (2015) Enzyme replacement and substrate reduction therapy for Gaucher disease Cochrane Database of Syst Rev:CD010324 https://doi.org/10.1002/14651858.CD010324.pub2

  106. Shirfule AL, Sangamwar AT, Khobragade CN (2011) Exploring glycolate oxidase (GOX) as an antiurolithic drug target: molecular modeling and in vitro inhibitor study. Int J Biol Macromol 49:62–70. https://doi.org/10.1016/j.ijbiomac.2011.03.016

    Article  CAS  PubMed  Google Scholar 

  107. Sikora P, Bienias B, Wawrzyszuk M, Zajaczkowska M (2008) 24-hour urinary oxalate excretion in healthy children and in children with calcium urolithiasis Polski merkuriusz lekarski: organ Polskiego Towarzystwa Lekarskiego 24 Suppl 4:76–79

    Google Scholar 

  108. Smid BE et al (2016) Biochemical response to substrate reduction therapy versus enzyme replacement therapy in Gaucher disease type 1 patients. Orphanet J Rare Dis 11:28. https://doi.org/10.1186/s13023-016-0413-3

    Article  PubMed  PubMed Central  Google Scholar 

  109. Stenberg K, Lindqvist Y (1997) Three-dimensional structures of glycolate oxidase with bound active-site inhibitors Protein Sci 6:1009–1015. https://doi.org/10.1002/pro.5560060506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Takahashi Y, Miyajima H, Kaneko E (1995) Genetic analysis of a family of lactate dehydrogenase A subunit deficiency. Internal Med 34:326–329

    Article  CAS  Google Scholar 

  111. Takayama T et al (2014) Ethnic differences in GRHPR mutations in patients with primary hyperoxaluria type 2. Clin Genet 86:342–348. https://doi.org/10.1111/cge.12292

    Article  CAS  PubMed  Google Scholar 

  112. Ueland PM, Ulvik A, Rios-Avila L, Midttun O, Gregory JF (2015) Direct and functional biomarkers of vitamin B6 status Ann Rev Nutr 35:33–70. https://doi.org/10.1146/annurev-nutr-071714-034330

    Article  CAS  Google Scholar 

  113. Whittamore JM, Hatch M (2017) The role of intestinal oxalate transport in hyperoxaluria and the formation of kidney stones in animals and man Urolithiasis 45:89–108. https://doi.org/10.1007/s00240-016-0952-z

    Article  CAS  PubMed  Google Scholar 

  114. Williams EL et al (2009) Primary hyperoxaluria type 1: update and additional mutation analysis of the AGXT gene. Hum Mutat 30:910–917. https://doi.org/10.1002/humu.21021

    Article  CAS  PubMed  Google Scholar 

  115. Zhao C et al (2018) Oxalate-Degrading enzyme recombined lactic acid bacteria strains reduce hyperoxaluria Urology 113:253 e251–253 e257 https://doi.org/10.1016/j.urology.2017.11.038

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by a grant from the Oxalosis and Hyperoxaluria Foundation (OHF2016 to BC) and by the Italian Minister of Instruction University and Research, SIR projects (RBSI148BK3 to BC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara Cellini.

Ethics declarations

Conflict of interest

The authors declare that they do not have any conflicts of interest to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dindo, M., Conter, C., Oppici, E. et al. Molecular basis of primary hyperoxaluria: clues to innovative treatments. Urolithiasis 47, 67–78 (2019). https://doi.org/10.1007/s00240-018-1089-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00240-018-1089-z

Keywords

Navigation