Skip to main content
Log in

Well-posedness and asynchronous exponential growth of an age-weight structured fish population model with nonautonomous past

  • Published:
Semigroup Forum Aims and scope Submit manuscript

Abstract

We study the fish population model integrating age and weight structures, introduced in E. Sánchez, M. L. Hbid, R. Bravo de la Parra. (J. Evol. Equ. 14:603–616, 2014). We reformulate the model in the nonautonomous past setting, and then as a boundary perturbation problem with unbounded operators in the boundary. Using semigroup theory of linear operators in Banach spaces, and via the theory of time-invariant regular system with feedback, we prove the existence and uniqueness of a classical solution with a form of a variation of parameters formula. We give an explicit criterion of the uniform exponential-stability by determining the characteristic equation of the model. We also prove the asynchronous exponential growth behaviour for the system unconditionally with the system parameters, and we give the associated projection in an explicit form. The results in this paper represent an improvement of the ones given in loc. cit. for the well-posedness and asymptotic behaviour.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bai, M., Xu, S.: Asynchronous exponential growth for a two-phase size-structured population model and comparison with the corresponding one-phase model. J. Biol. Dyn. 12(1), 683–699 (2018). https://doi.org/10.1080/17513758.2018.1501104

    Article  MathSciNet  MATH  Google Scholar 

  2. Batkai, A., Fijavž, M.K., Rhandi, A.: Positive Operator Semigroups: From Finite to Infinite Dimensions. Birkhäuser, Basel (2017)

    Book  Google Scholar 

  3. Bátkai, A., Piazzera, S.: Semigroups for Delay Equations. Research Notes in Mathematics, vol. 10. A.K. Peters, Wellesley, MA (2005)

    Book  Google Scholar 

  4. Boulite, S., Halloumi, M., Maniar, L.: A population dynamics model with nonautonomous past. Quaest. Math. 41(8), 1073–1082 (2018). https://doi.org/10.2989/16073606.2017.1419999

    Article  MathSciNet  MATH  Google Scholar 

  5. Brendle, S., Nagel, R.: Partial functional differential equations with nonautonomous past. Disc. Cont. Dyn. Sys. 8, 953–966 (2002). https://doi.org/10.3934/dcds.2002.8.953

    Article  MATH  Google Scholar 

  6. Clément, P., Heijmans, H.J.A.M., Angenent, S., van Duijn, C.J., De Pagter, B.: One-parameter Semigroups, vol. 5. CWI Monographs, North-Holland, Amsterdam (1987)

    MATH  Google Scholar 

  7. Engel, K.-J., et al.: Maximal Controllability for Boundary Control Problems. Appl. Math. Optim. 62, 205–227 (2010). https://doi.org/10.1007/S00245-010-9101-1

    Article  MathSciNet  MATH  Google Scholar 

  8. Engel, K.-J., Nagel, R.: One-Parameter Semigroups for Linear Evolution Equations. In: Graduate Texts in Mathematics, vol. 194. Springer, New York (2000). https://doi.org/10.1007/b97696

    Book  MATH  Google Scholar 

  9. Fragnelli, G., Idrissi, A., Maniar, L.: The asymptotic behaviour of a population equation with diffusion and delayed birth process. Disc. Cont. Dyn. Sys. 7(4), 735–754 (2007). https://doi.org/10.3934/dcdsb.2007.7.735

    Article  MATH  Google Scholar 

  10. Fragnelli, G., Nickel, G.: Partial functional differential equations with nonautonomous past in \(L^p\)-phase spaces. Diff. Int. Eq. 16(3), 327–348 (2003)

    MATH  Google Scholar 

  11. Fragnelli, G., Tonetto, L.: A population equation with diffusion. J. Math. Anal. Appl. 289, 90–99 (2004). https://doi.org/10.1016/j.jmaa.2003.08.047

    Article  MathSciNet  MATH  Google Scholar 

  12. Goldstein, J., Rosencrans, S., Sod, G.: Mathematics Applied to Science. In Memoriam Edward D. Conway. Academic Press, Boston (2014)

    MATH  Google Scholar 

  13. Greiner, G.: A typical Perron–Frobenius theorem with applications to an age-dependent population equation. In: F. Kappel and W. Schappacher, (eds.) Infinite-Dimensional Systems. Lect. Notes in Math., vol. 1076, pp. 86–100. Springer, Berlin (1984). https://doi.org/10.1007/BFb0072769

  14. Greiner, G.: Perturbing the boundary conditions of a generator. Houston J. Math. 13, 213–229 (1987)

    MathSciNet  MATH  Google Scholar 

  15. Greiner, G., Nagel, R.: Growth of cell populations via one-parameter semigroups of positive operators. In: Mathematics Applied to Science, pp. 79–105 (1988). https://doi.org/10.1016/B978-0-12-289510-4.50012-4

  16. Hadd, S., Manzo, R., Rhandi, A.: Unbounded perturbations of the generator domain. Disc. Con. Dyn. Sys. 35(2), 703–723 (2015). https://doi.org/10.3934/dcds.2015.35.703

    Article  MathSciNet  MATH  Google Scholar 

  17. Iannelli, M.: Mathematical Theory of Age-Structured Population Dynamics. In: Appl. Math. Monographs, vol. 7. Giardini Editori e Stampatori, Pisa (1994)

    Google Scholar 

  18. Li, J., Brauer, F.: Continuous-time age-structured models in population dynamics and epidemiology. In: F. Brauer, P. van den Driessche, J. Wu (eds.) Mathematical Epidemiology, pp. 205-227. Springer, Berlin, (2008). https://doi.org/10.1007/978-3-540-78911-6_9

  19. Mei, Z.D., Peng, J.G.: Dynamic boundary systems with boundary feedback and population system with unbounded birth process. Math. Meth. Appl. Sci. 38(8), 1642–1651 (2015). https://doi.org/10.1002/mma.3175

    Article  MathSciNet  MATH  Google Scholar 

  20. Nagel, R.: The spectrum of unbounded operator matrices with non-diagonal domain. J. Funct. Analysis 89, 291–302 (1990). https://doi.org/10.1016/0022-1236(90)90096-4

    Article  MathSciNet  MATH  Google Scholar 

  21. Nagel, R., Sinestrari, E.: Inhomogeneous Volterra integrodifferential equations for Hille-Yosida operators. In: Functional Analysis (Proceedings Essen 1991). In: K.D. Bierstedt, A. Pietsch, W.M. Ruess, and D. Vogt (eds.), Lect. Notes in Pure and Appl. Math., vol. 150, pp. 51–70. Marcel Dekker, New York (1994)

  22. Nickel, G., Rhandi, A.: On the essential spectral radius of semigroups generated by perturbations of Hille-Yosida operators. Tübinger Berichte zur Funktionalanalysis 4, 207–220 (1995)

    Google Scholar 

  23. Nickel, G., Rhandi, A.: Positivity and stability of delay equations with non-autonomous past. Math. Nachr. 278, 864–876 (2005). https://doi.org/10.1002/mana.200310278

    Article  MathSciNet  MATH  Google Scholar 

  24. Piazzera, S.: An age dependent population equation with delayed birth process. Math. Meth. Appl. Sci. 27, 427–439 (2004). https://doi.org/10.1002/mma.462

    Article  MathSciNet  MATH  Google Scholar 

  25. Piazzera, S., Tonetto, L.: Asynchronous exponential growth for an age dependent population equation with delayed birth process. J. Evol. Equ. 5, 61–77 (2005). https://doi.org/10.1007/S00028-004-0159-6

    Article  MathSciNet  MATH  Google Scholar 

  26. Prüss, J.: Evolutionary Integral Equations and Applications. Birkhäuser, Basel (1993). https://doi.org/10.1007/978-3-0348-0499-8

    Book  MATH  Google Scholar 

  27. Sánchez, E., Hbid, M.L., Bravo de la Parra, R.: Mathematical analysis of a population model with an age-weight structured two-stage life history: Asymptotic behavior of solutions. J. Evol. Equ. 14, 603–616 (2014). https://doi.org/10.1007/s00028-014-0229-3

    Article  MathSciNet  MATH  Google Scholar 

  28. Staffans, O.J.: Well-Posed Linear Systems (Encyclopedia of Mathematics and its Applications). Cambridge University Press, Cambridge (2005). https://doi.org/10.1017/CBO9780511543197

    Book  Google Scholar 

  29. Webb, G.F.: Theory of Nonlinear Age-Dependent Population Dynamics. Marcel Dekker, New York (1985)

    MATH  Google Scholar 

  30. Webb, G.F.: An operator-theoretic formulation of asynchronous exponential growth. Trans. Amer. Math. Soc. 303, 751–763 (1987). https://doi.org/10.1090/S0002-9947-1987-0902796-7

    Article  MathSciNet  MATH  Google Scholar 

  31. Webb, G.F.: Population models structured by age, size, and spatial position In: P. Magal, S. Ruan (eds.), Structured Population Models in Biology and Epidemiology.) Lecture Notes in Mathematics, vol. 1936, pp. 1–49. Springer, Berlin (2008). https://doi.org/10.1007/978-3-540-78273-5_1

  32. Weiss, G.: Admissible observation operators for linear semigroups. Israel J. Math. 65, 17–43 (1989). https://doi.org/10.1007/BF02788172

    Article  MathSciNet  MATH  Google Scholar 

  33. Weiss, G.: Admissibility of unbounded control operators. SIAM J. Control. Optim. 27(3), 527–545 (1989). https://doi.org/10.1137/0327028

    Article  MathSciNet  MATH  Google Scholar 

  34. Weiss, G.: Regular linear systems with feedback. Math. Control Signals Syst. 7, 23–57 (1994). https://doi.org/10.1007/BF01211484

    Article  MathSciNet  MATH  Google Scholar 

  35. Yan, D., Fu, X.: Asymptotic behavior of a hierarchical size-structured population mode. Evol. Equ. Control Theory 7(2), 293–316 (2018). https://doi.org/10.3934/eect.2018015

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lahcen Maniar.

Additional information

Communicated by Abdelaziz Rhandi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boujijane, S., Boulite, S., Halloumi, M. et al. Well-posedness and asynchronous exponential growth of an age-weight structured fish population model with nonautonomous past. Semigroup Forum 105, 117–148 (2022). https://doi.org/10.1007/s00233-022-10300-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00233-022-10300-7

Keywords

Navigation