Skip to main content
Log in

Characterization of TRPM8-Like Channels Activated by the Cooling Agent Icilin in the Macrophage Cell Line RAW 264.7

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

Icilin is recognized as a chemical agonist of nociceptors and can activate TRPM8 channels. However, whether this agent has any effects on immune cells remains unknown. In this study, the effects of icilin on ion currents were investigated in RAW 264.7 murine macrophage-like cells. Icilin (1–100 μM) increased the amplitude of nonselective (NS) cation current (I NS) in a concentration-dependent manner with an EC50 value of 8.6 μM. LaCl3 (100 μM) or capsazepine (30 μM) reversed icilin-induced I NS; however, neither apamin (200 nM) nor iberiotoxin (200 nM) had any effects on it. In cell-attached configuration, when the electrode was filled with icilin (30 μM), a unique population of NS cation channels were activated with single-channel conductance of 158 pS. With the use of a long-lasting ramp pulse protocol, increasing icilin concentration produced a left shift in the activation curve of NS channels, with no change in the slope factor of the curve. The probability of channel opening enhanced by icilin was increased by either elevated extracellular Ca2+ or application of ionomycin (10 μM), while it was reduced by BAPTA-AM (10 μM). Icilin-stimulated activity is associated with an increase in mean open time and a reduction in mean closed time. Under current-clamp conditions, icilin caused membrane depolarization. Therefore, icilin interacts with the TRPM8-like channel to increase I NS and depolarizes the membrane in these cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Carl A, Sanders KM (1990) Measurement of single channel open probability with voltage ramps. J Neurosci Methods 33:157–163

    Article  PubMed  CAS  Google Scholar 

  • Channon JY, Leslie CC (1990) A calcium-dependent mechanism for associating a soluble arachidonoyl-hydrolyzing phospholipase A2 with membrane in the macrophage cell line RAW 264.7. J Biol Chem 265:5409–5413

    PubMed  CAS  Google Scholar 

  • Chodon D, Guilbert A, Dhennin-Duthille I, Gautier M, Telliez MS, Sevestre H, Ouadid-Ahidouch H (2010) Estrogen regulation of TRPM8 expression in breast cancer cells. BMC Cancer 10:212

    Article  PubMed  Google Scholar 

  • Chuang HH, Neuhausser WM, Julius D (2004) The super-cooling agent icilin reveals a mechanism of coincidence detection by a temperature-sensitive TRP channel. Neuron 43:859–869

    Article  PubMed  CAS  Google Scholar 

  • Colburn RW, Lubin ML, Stone DJ Jr, Wang Y, Lawrence D, D’Andrea MR, Brandt MR, Liu Y, Flores CM, Qin N (2007) Attenuated cold sensitivity in TRPM8 null mice. Neuron 54:379–386

    Article  PubMed  CAS  Google Scholar 

  • Fernández JA, Skryma R, Bidaux G, Magleby KL, Scholfield CN, McGeown JG, Prevarskaya N, Zholos AV (2011) Voltage- and cold-dependent gating of single TRPM8 ion channels. J Gen Physiol 137:173–195

    Article  PubMed  Google Scholar 

  • Harteneck C (2005) Function and pharmacology of TRPM cation channels. Naunyn-Schmiedebergs Arch Pharmacol 371:307–314

    Article  PubMed  CAS  Google Scholar 

  • Hui K, Guo Y, Feng Z-P (2005) Biophysical properties of menthol-activated cold receptor TRPM8 channels. Biochem Biophys Res Commun 333:374–382

    Article  PubMed  CAS  Google Scholar 

  • Johnson CD, Melanaphy D, Purse A, Stokesberry SA, Dickson P, Zholos AV (2009) Transient receptor potential melastatin 8 channel involvement in the regulation of vascular tone. Am J Physiol Heart Circ Physiol 296:H1868–H1877

    Article  PubMed  CAS  Google Scholar 

  • Kemmer G, Keller S (2010) Nonlinear least-squares data fitting in Excel spreadsheets. Nat Protocol 5:267–281

    Article  CAS  Google Scholar 

  • Kuo JH, Jan MS, Chang CH, Chiu HW, Li CT (2005) Cytotoxicity characterization of catanionic vesicles in RAW 264.7 murine macrophage-like cells. Colloids Surf B 41:189–196

    Article  CAS  Google Scholar 

  • Louhivuori LM, Bart G, Larsson KP, Louhivuori V, Näsman J, Nordström T, Koivisto A-P, Åkerman KE (2009) Differentiation dependent expression of TRPA1 and TRPM8 channels in IMR32 human neuroblastoma cells. J Cell Physiol 221:67–74

    Article  PubMed  CAS  Google Scholar 

  • Mahieu F, Janssens A, Gees M, Talavera K, Nilius B, Voets T (2010) Modulation of the cold-activated cation channel TRPM8 by surface charge screening. J Physiol 588(2):315–324

    Article  PubMed  CAS  Google Scholar 

  • McKemy DD, Neuhausser WM, Julius D (2002) Identification of a cold receptor reveals a general role for TRP channels in thermosensation. Nature 416:52–58

    Article  PubMed  CAS  Google Scholar 

  • Mergler S, Strowski MZ, Kaiser S, Plath T, Giesecke Y, Neumann M, Hosokawa H, Kobayashi S, Langrehr J, Neuhaus P, Plöckinger U, Wiedenmann B, Grötzinger C (2007) Transient receptor potential channel TRPM8 agonists stimulate calcium influx and neurotensin secretion in neuroendocrine tumor cells. Neuroendocrinology 85:81–92

    Article  PubMed  CAS  Google Scholar 

  • Miller BA (2006) The role of TRP channels in oxidative stress-induced cell death. J Membr Biol 209:31–41

    Article  PubMed  CAS  Google Scholar 

  • Pan MH, Chang YH, Tsai ML, Lai CS, Ho SY, Badmaev V, Ho CT (2008) Pterostilbene suppressed lipopolysaccharide-induced up-expression of iNOS and COX-2 in murine macrophages. J Agric Food Chem 56:7502–7509

    Article  PubMed  CAS  Google Scholar 

  • Parks DJ, Parsons WH, Colburn RW, Meegalla SK, Ballentine SK, Illig CR, Qin N, Liu Y, Hutchinson TL, Lubin ML, Stone DJ Jr, Baker JF, Schneider CR, Ma J, Damiano BP, Flores CM, Player MR (2011) Design and optimization of benzimidazole-containing transient receptor potential melastatin 8 (TRPM8) antagonists. J Med Chem 54:233–247

    Article  CAS  Google Scholar 

  • Perraud A-L, Knowles HM, Schmitz C (2004) Novel aspects of signaling and ion-homeostasis regulation in immunocytes. The TRPM ion channels and their potential role in modulating the immune response. Mol Immunol 41:657–673

    Article  PubMed  CAS  Google Scholar 

  • Sabnis AS, Shadid M, Yost GS, Reilly CA (2008) Human lung epithelial cells express a functional cold-sensing TRPM8 variant. Am J Respir Cell Mol Biol 39:466–474

    Article  PubMed  CAS  Google Scholar 

  • Sabovcik R, Li J, Kucera P, Prod’hom B (1995) Permeation properties of a Ca2+-blockable monovalent cation channel in the ectoderm of the chick embryon: pore size and multioccupancy probed with organic cations and Ca2+. J Gen Physiol 106:149–174

    Article  PubMed  CAS  Google Scholar 

  • Sherkheli MA, Vogt-Eisele AK, Bura D, Beltrán Márgues LR, Gisselmann G, Hatt H (2010) Characterization of selective TRPM8 ligands and their structure activity response (S.A.R.) relationship. J Pharm Pharm Sci 13:242–253

    PubMed  CAS  Google Scholar 

  • Tominaga M, Caterina MJ (2004) Thermosensation and pain. J Neurobiol 61:3–12

    Article  PubMed  Google Scholar 

  • Valero M, Morenilla-Palao C, Belmonte C, Viana F (2011) Pharmacological and functional properties of TRPM8 channels in prostate tumor cells. Pfluegers Arch 461:99–114

    Article  CAS  Google Scholar 

  • Wang H, Woolf CJ (2005) Pain TRPs. Neuron 46:9–12

    Article  PubMed  CAS  Google Scholar 

  • Wondergem R, Bartley JW (2009) Menthol increases human glioblastoma intracellular Ca2+, BK channel activity and cell migration. J Biomed Sci 16:90

    Article  PubMed  Google Scholar 

  • Wu SN, Lin PH, Hsieh KS, Liu YC, Chiang HT (2003) Behavior of nonselective cation channels and large-conductance Ca2+-activated K+ channels induced by dynamic changes in membrane stretch in cultured smooth muscle cells of human coronary artery. J Cardiovasc Electrophysiol 14:44–51

    Article  PubMed  Google Scholar 

  • Wu SN, Peng H, Chen BS, Wang YJ, Wu PY, Lin MW (2008) Potent activation of large-conductance Ca2+-activated K+ channels by the diphenylurea 1,3-bis-[2-hydroxy-5-(trifluoromethyl)phenyl]urea (NS11643) in pituitary tumor (GH3) cells. Mol Pharmacol 74:1696–1704

    Article  PubMed  CAS  Google Scholar 

  • Yamashiro K, Sasano T, Tojo K, Namekata I, Kurokawa J, Sawada N, Suganami T, Kamei Y, Tanaka H, Tajima N, Utsunomiya K, Ogawa Y, Furukawa T (2010) Role of transient receptor potential vanilloid 2 in LPS-induced cytokine production in macrophages. Biochem Biophys Res Commun 398:284–289

    Article  PubMed  CAS  Google Scholar 

  • Zakharian E, Cao C, Rohacs T (2010) Gating of transient receptor potential melastatin 8 (TRPM8) channels activated by cold and chemical agonists in planar lipid bilayers. J Neurosci 30:12526–12534

    Article  PubMed  CAS  Google Scholar 

  • Zholos A (2010) Pharmacology of transient receptor potential melastatin channels in the vasculature. Br J Pharmacol 159:1559–1571

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was partially aided by grants from the National Science Council (NSC-98-2320-B-006-MY3), Taiwan, through a contract awarded to S.-N. W. The authors thank Hsien-Ching Huang and Chia-Chen Yeh for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheng-Nan Wu.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 176 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, SN., Wu, PY. & Tsai, ML. Characterization of TRPM8-Like Channels Activated by the Cooling Agent Icilin in the Macrophage Cell Line RAW 264.7. J Membrane Biol 241, 11–20 (2011). https://doi.org/10.1007/s00232-011-9358-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-011-9358-6

Keywords

Navigation