Skip to main content
Log in

Functional Expression of Inward Rectifier Potassium Channels in Cultured Human Pulmonary Smooth Muscle Cells: Evidence for a Major Role of Kir2.4 Subunits

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

Strong inwardly rectifying K+ (KIR) channels that contribute to maintaining the resting membrane potential are encoded by the Kir2.0 family (Kir2.1–2.4). In smooth muscle, KIR currents reported so far have the characteristics of Kir2.1. However, Kir2.4, which exhibits unique characteristics of barium block, has been largely overlooked. Using patch-clamp techniques, we characterized KIR channels in cultured human pulmonary artery smooth muscle (HPASM) cells and compared them to cloned Kir2.1 and Kir2.4 channels. In a physiological K+ gradient, inwardly rectifying currents were observed in HPASM cells, the magnitude and reversal potential of which were sensitive to extracellular K+ concentration. Ba2+ (100 μM) significantly inhibited inward currents and depolarized HPASM cells by ∼10 mV. In 60 mM extracellular K+, Ba2+ blocked KIR currents in HPASM cells with a 50% inhibitory concentration of 39.1 μM at –100 mV compared to 3.9 μM and 65.6 μM for Kir2.1 and Kir2.4, respectively. Cloned Kir2.4 and KIR currents in HPASM cells showed little voltage dependence to Ba2+ inhibition, which blocked at a more superficial site than for Kir2.1. Single-channel recordings revealed strong inwardly rectifying channels with an average conductance of 21 pS in HPASM cells, not significantly different from either Kir2.1 (19.6 pS) or Kir2.4 (19.4 pS). Reverse-transcription polymerase chain reaction detected products corresponding to Kir2.1, Kir2.2 and Kir2.4 but not Kir2.3. We demonstrate that cultured HPASM cells express KIR channels and suggest both Kir2.1 and Kir2.4 subunits contribute to these channels, although the whole-cell current characteristics described share more similarity with Kir2.4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

References

  • Alioua A., Conti L., Eghbali M., Mahajan A., Tanaka Y., Stefani E., Vandenberg C., Toro L. 2003. Inward rectifier K+ channels (Kir) control muscle tone of a rat conduit vessel: Role of Kir2.x. Biophys. J. 84:225A

    Google Scholar 

  • Bradley K.K., Jaggar J.H., Bonev A.D., Heppner T.J., Flynn E.R.M., Nelson M.T., Horowitz B. 1999. Kir2.1 encodes the inward rectifier potassium channel in rat arterial smooth muscle. J. Physiol. 515:639–651

    Article  PubMed  CAS  Google Scholar 

  • Cui Y., Giblin J.P., Clapp L.H., Tinker A. 2001. A mechanism for ATP-sensitive potassium channel diversity: Functional coassembly of two pore forming subunits. Proc. Natl. Acad. Sci. USA 98:729–734

    Article  PubMed  CAS  Google Scholar 

  • Cui Y., Tran S., Tinker A., Clapp L.H. 2002. The molecular composition of KATP channels in human pulmonary artery smooth muscle cells and their modulation by growth. Am. J. Respir. Cell. Mol. Biol. 26:135–143

    PubMed  CAS  Google Scholar 

  • Edwards F.R., Hirst G.D.S., Silverberg G.D. 1988. Inward rectification in rat cerebral arterioles: Involvement of potassium ions in autoregulation. J. Physiol. 404:455–466

    PubMed  CAS  Google Scholar 

  • Edwards G., Weston A.H. 2004. Potassium and potassium clouds in endothelium-dependent hyperpolarizations. Pharmacol. Res. 49:535–541

    Article  PubMed  CAS  Google Scholar 

  • Fang Y., Schram G., Romanenko V.G., Shi C., Conti L., Vandenberg C.A., Davies P.F., Nattel S., Levitan I. 2005. Functional expression of Kir2.x in human aortic endothelial cells: The dominant role of Kir2.2. Am. J. Physiol. 289:C1134–C1144

    Article  CAS  Google Scholar 

  • Flynn E.R.M., McManus C.A., Bradley K.K., Koh S.D., Hegarty T.M., Horowitz B., Sanders K.M. 1999. Inward rectifier potassium conductance regulates membrane potential of canine smooth muscle. J. Physiol. 518:247–256

    Article  PubMed  CAS  Google Scholar 

  • Giblin J.P., Leaney J.L., Tinker A. 1999. The molecular assembly of ATP-sensitive potassium channels: Determinants on the pore forming subunit. J. Biol. Chem. 274:22652–22659

    Article  PubMed  CAS  Google Scholar 

  • Hoger J.H., Ilyin V.I., Forsyth S., Hoger A. 2002. Shear stress regulates the endothelial Kir2.1 ion channel. Proc. Natl. Acad. Sci. USA 99:7780–7785

    Article  PubMed  CAS  Google Scholar 

  • Hogg D.S., McMurray G., Kozlowski R.Z. 2002. Endothelial cells freshly isolated from small pulmonary arteries of the rat possess multiple distinct K+ current profiles. Lung 180:203–214

    Article  PubMed  CAS  Google Scholar 

  • Hughes B.A., Kumar G., Yuan Y., Swaminathan A., Yan D., Sharma A., Plumley L., Yang-Feng T.L., Swaroop A. 2000. Cloning and functional expression of human retinal Kir2.4, a pH-sensitive inwardly rectifying K+ channel. Am. J. Physiol. 279:C771–C784

    CAS  Google Scholar 

  • Kamouchi M., Van Den Bremt K., Eggermont J., Droogmans G., Nilius B. 1997. Modulation of inwardly rectifying potassium channels in cultured bovine pulmonary artery endothelial cells. J. Physiol. 504:545–556

    Article  PubMed  CAS  Google Scholar 

  • Knot H.J., Zimmermann P.A., Nelson M.T. 1996. External K+ induced dilations of rat coronary and cerebral arteries involve inward rectifier K+ channels. J. Physiol. 492:419–430

    PubMed  CAS  Google Scholar 

  • Liu G.X., Derst C., Schlichthorl G., Heinen S., Seebohm G., Bruggemann A., Kummer W., Veh R.W., Daut J., Preisig-Muller R. 2001. Comparison of cloned Kir2 channels with native inward rectifier K+ channels from guinea-pig cardiomyocytes. J. Physiol. 532:115–126

    Article  PubMed  CAS  Google Scholar 

  • Michelakis E.D., Weir E.K., Wu X., Nsair A., Waite R., Hashimoto K., Puttagunta L., Knaus H.G., Archer S.L. 2001. Potassium channels regulate tone in rat pulmonary veins. Am. J. Physiol. 280:L1138–L1147

    CAS  Google Scholar 

  • Nakamura T.Y., Lee K., Artman M., Rudy B., Coetzee W.A. 1999. The role of Kir2.1 in the genesis of native cardiac inward-rectifier K+ currents during pre- and postnatal development. Ann. N. Y. Acad. Sci. 868:434–437

    Article  PubMed  CAS  Google Scholar 

  • Nichols C.G., Lopatin A.N. 1997. Inward rectifier potassium channels. Annu. Rev. Physiol. 59:171–191

    Article  PubMed  CAS  Google Scholar 

  • Nilius B. Droogmans G. 2001. Ion channels in the vascular endothelium. Physiol. Rev. 81:1415–1459

    PubMed  CAS  Google Scholar 

  • Oonuma H., Iwasawa K., Iida H., Nagata T., Imuta H., Morita Y., Yamamoto K., Nagai R., Omata M., Nakajima T. 2002. Inward rectifier K+ current in human bronchial smooth muscle cells: Inhibition with antisense oligonucleotides targeted to Kir2.1 mRNA. Am. J. Respir. Cell Mol. Biol. 26:371–379

    PubMed  CAS  Google Scholar 

  • Orie N.N., Fry C.H., Clapp L.H. 2006. Evidence that inward rectifier K+ channels mediate relaxation by the PGI2 receptor agonist cicaprost via a cyclic AMP-independent mechanism. Cardiovasc. Res. 69:107–115

    Article  PubMed  CAS  Google Scholar 

  • Preisig-Muller R., Schlichthorl G., Goerge T., Heinen S., Bruggemann A., Rajan S., Derst C., Veh R.W., Daut J. 2002. Heteromerization of Kir2.x potassium channels contributes to the phenotype of the Andersen’s syndrome. Proc. Natl. Acad. Sci. USA 99:7774–7779

    Article  PubMed  CAS  Google Scholar 

  • Quayle J.M., Dart C., Standen N.B. 1996. The properties and distribution of inward rectifier potassium currents in pig coronary arterial smooth muscle. J. Physiol. 494:715–726

    PubMed  CAS  Google Scholar 

  • Quayle J.M., Mccarron J.G., Brayden J.E., Nelson M.T. 1993. Inward rectifier K+ currents in smooth muscle cells from rat resistance-sized cerebral arteries. Am. J. Physiol. 265:C1363–C1370

    PubMed  CAS  Google Scholar 

  • Quayle J.M., Nelson M.T., Standen N.B. 1997. ATP-sensitive and inwardly rectifying potassium channels in smooth muscle. Physiol. Rev. 77:1166–1232

    Google Scholar 

  • Robertson B.E., Bonev A.D., Nelson M.T. 1996. Inward rectifier K+ currents in smooth muscle cells from rat coronary arteries: Block by Mg2+, Ca2+, and Ba2+. Am. J. Physiol. 40:H696–H705

    Google Scholar 

  • Sakai H., Shimizu T., Hori K., Ikari A., Asano S., Takeguchi N. 2002. Molecular and pharmacological properties of inwardly rectifying K+ channels of human lung cancer cells. Eur. J. Pharmacol. 435:125–133

    Article  PubMed  CAS  Google Scholar 

  • Schram G., Melnyk P., Pourrier M., Wang Z., Nattel S. 2002. Kir2.4 and Kir2.1 K+ channel subunits co-assemble: A potential new contributor to inward rectifier current heterogeneity. J. Physiol 544:337–349

    Article  PubMed  CAS  Google Scholar 

  • Shimoda L.A., Welsh L.E., Pearse D.B. 2002. Inhibition of inwardly rectifying K+ channels by cGMP in pulmonary vascular endothelial cells. Am. J. Physiol. 283:L297–L304

    CAS  Google Scholar 

  • Snetkov V.A., Ward J.P.T. 1999. Ion currents in smooth muscle cells from human small bronchioloes: Presence of an inward rectifier K+ current and three types of large conductance K+ channels. Exp. Physiol. 84:835–846

    Article  PubMed  CAS  Google Scholar 

  • Stanfield P.R., Nakajima S., Nakajima Y. 2002. Constitutively active and G-protein coupled inward rectifier K+ channels: Kir2.0 and Kir3.0. Rev. Physiol. Biochem. Pharmacol. 145:47–179

    PubMed  CAS  Google Scholar 

  • Stonehouse A.H., Pringle J.H., Norman R.I., Stanfield P.R., Conley E.C., Brammar W.J. 1999. Characterisation of Kir2.0 proteins in the rat cerebellum and hippocampus by polyclonal antibodies. Histochem. Cell Biol. 112:457–465

    Article  PubMed  CAS  Google Scholar 

  • Topert C., Doring F., Wischmeyer E., Karschin C., Brockhaus J., Ballanyi K., Derst C., Karschin A. 1998. Kir2.4: A novel K+ inward rectifier channel associated with motoneurons of cranial nerve nuclei. J. Neurosci. 18:4096–4105

    PubMed  CAS  Google Scholar 

  • Voets T., Droogmans G., Nilius B. 1996. Membrane currents and the resting membrane potential in cultured bovine pulmonary artery endothelial cells. J. Physiol. 497:95–107

    PubMed  CAS  Google Scholar 

  • Woodhull A.M. 1973. Ionic blockage of sodium channels in nerve. J. Gen. Physiol 61:687–708

    Article  PubMed  CAS  Google Scholar 

  • Zaritsky J.J., Eckman D.M., Wellman G.C., Nelson M.T., Schwarz T.L. 2000. Targeted disruption of Kir2.1 and Kir2.2 genes reveals the essential role of the inwardly rectifying K+ current in K+-mediated vasodilation. Circ. Res. 87:160–166

    PubMed  CAS  Google Scholar 

  • Zaritsky J.J., Redell J.B., Tempel B.L., Schwarz T.L. 2001. The consequences of disrupting cardiac inwardly rectifying K+ current (IK1) as revealed by the targeted deletion of the murine Kir2.1 and Kir2.2 genes. J. Physiol. 533:697–710

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by the British Heart Foundation (PG 99176, PG/03/062). L. H. C. is a Medical Research Council Senior Fellow in Basic Science (G117/440).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucie H. Clapp.

Additional information

The first two authors contributed equally to the work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tennant, B.P., Cui, Y., Tinker, A. et al. Functional Expression of Inward Rectifier Potassium Channels in Cultured Human Pulmonary Smooth Muscle Cells: Evidence for a Major Role of Kir2.4 Subunits. J Membrane Biol 213, 19–29 (2006). https://doi.org/10.1007/s00232-006-0037-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-006-0037-y

Keywords

Navigation