Skip to main content
Log in

Correlation equations for optimum design of annular fins with temperature dependent thermal conductivity

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

Correlation equations for optimum design of annular fins with temperature-dependent thermal conductivity are obtained in the present work. The nonlinear fin equation which is associated with variable thermal conductivity condition is solved by Adomian decomposition method that provides an analytical solution in the form of an infinite power series. The optimum radii ratio of an annular fin which maximizes the heat transfer rate has been found as a function of Biot number and the fin volume for a given thermal conductivity parameter describing the variation of the thermal conductivity. The fin volume is fixed to obtain the dimensionless geometrical parameters of the fin with maximum heat transfer rate. The data from the present solutions is correlated for a suitable range of Biot number and the fin volume. The simple correlation equations presented in this work can assist for thermal design engineers for optimum design of annular fins with temperature-dependent thermal conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

A m :

Adomian polynomials

Bi :

Biot number, hr i/k

Bi T :

transverse Biot number, ht/2k

h :

convection heat transfer coefficient [W/(m2K]

k :

thermal conductivity of the fin material [W/(mK)]

L:

the highest order derivative

L −1 :

inverse operator of L

N :

nonlinear operator

q :

dimensionless heat-transfer rate defined in Eq. 28

Q :

dimensional heat-transfer rate (W)

r :

radial coordinate (m)

r i :

inner radius of the annular fin (m)

r o :

outer radius of the annular fin (m)

R :

remainder of linear operator

t :

thickness of the annular fin (m)

T :

temperature (K)

v :

dimensionless volume of the fin \( {V \mathord{/ {\vphantom {V {( {\pi r_{\text{i}}^{3} })}}} \kern-\nulldelimiterspace} {( {\pi r_{\text{i}}^{3} })}} \)

V :

volume of the fin (m3)

α:

integral constant representing dimensionless temperature at the fin tip

β:

dimensionless parameter describing variation of the thermal conductivity

δ:

dimensionless thickness of the fin, t/r i

λ:

the radii ratio, r o/r i

θ:

dimensionless temperature

ξ:

dimensionless radial coordinate

b:

base

∞:

ambient fluid

*:

optimum

References

  1. Kraus A, Aziz A, Welty J (2001) Extended surface heat transfer. Wiley, New York

    Google Scholar 

  2. Mikk I (1980) Convective fin of minimum mass. Int J Heat Mass Transf 23:707–711

    Article  MATH  Google Scholar 

  3. Ullmann A, Kalman H (1989) Efficiency and optimized dimensions of annular fins of different cross-section shapes. Int J Heat Mass Transf 32:1105–1110

    Article  Google Scholar 

  4. Aziz A (1992) Optimum dimensions of extended surfaces operating in a convective environment. Appl Mech Rev 45(5):155–173

    Article  Google Scholar 

  5. Aziz A, Enamul Hug SM (1975) Perturbation solution for convecting fin with variable thermal conductivity. ASME J Heat Transf 97C:300–301

    Article  Google Scholar 

  6. Yu LT, Chen CK (1998) Application of Taylor transformation to optimize rectangular fins with variable thermal parameters. App Math Model 22:11–21

    Article  MATH  Google Scholar 

  7. Yu LT, Chen CK (1999) Optimization of circular fins with variable thermal parameters. J Franklin Inst 336(1):77–95

    Article  MATH  Google Scholar 

  8. Chiu CH, Chen CK (2002) A decomposition method for solving convective longitudinal fins with variable conductivity. Int J Heat Mass Transf 45:2067–2075

    Article  MATH  Google Scholar 

  9. Chiu CH, Chen CK (2002) Application of the decomposition method to thermal stresses in isotropic circular fins with temperature-dependent thermal conductivity. Acta Mechanica 157:147–158

    Article  MATH  Google Scholar 

  10. Malekzadeh P, Rahideh H, Karami G (2006) Optimization of convective–radiative fins by using differential quadrature element method. Energy Conv Manage 47(11–12):1505–1514

    Article  Google Scholar 

  11. Malekzadeh P, Rahideh H, Setoodeh AR (2007) Optimization of non-symmetric convective–radiative annular fins by differential quadrature method. Energy Conv Manage 48(5):1671–1677

    Article  Google Scholar 

  12. Arslanturk C (2005) Simple correlation equations for optimum design of annular fins with uniform thickness. Appl Therm Eng 25:2463–2468

    Article  Google Scholar 

  13. Adomian G (1994) Solving frontier problems of physics: the decomposition method. Kluwer, Boston

    Book  MATH  Google Scholar 

  14. Cherruault Y (1989) Convergence of Adomian’s method. Kybernets 18:31–38

    Article  MATH  Google Scholar 

  15. Répaci A (1993) Nonlinear dynamical systems: on the accuracy of Adomian’s decomposition method. Appl Math Lett 3:35–39

    Article  MATH  Google Scholar 

  16. Abbaoui K, Cherruault Y (1994) Convergence of Adomian’s method applied to nonlinear equations. Math Comp Model 20:69–73

    Article  MATH  Google Scholar 

  17. Levitsky M (1972) The criterion for validity of the fin approximation. Int J Heat Mass Transf 15:1960–1963

    Article  Google Scholar 

  18. Lau W, Tan CW (1973) Errors in one-dimensional heat transfer analysis in straight and annular fins. ASME J Heat Transf 95:549–551

    Article  Google Scholar 

  19. Casarosa C, Franco A (2001) On the optimum thermal design of the individual longitudinal fins with rectangular profile. Heat Transf Eng 22:51–71

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cihat Arslanturk.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arslanturk, C. Correlation equations for optimum design of annular fins with temperature dependent thermal conductivity. Heat Mass Transfer 45, 519–525 (2009). https://doi.org/10.1007/s00231-008-0446-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-008-0446-9

Keywords

Navigation