Skip to main content
Log in

Microscopic explosive boiling induced by a pulsed-laser irradiation

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

This paper presents an experimental study of microscopic explosive boiling introduced by a pulsed laser. The violent explosive boiling was observed in the liquid film, and the vapor bubbles together with liquid droplets were expelled from the platinum film. It is found that the apparent bubble nucleation temperature is a strong function of the heating rate. The pressure signal appears as continuous oscillation and is intensified as laser power density increases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

a :

scale index

A :

coefficient

b :

position index

B :

coefficient

C :

coefficient

D :

coefficient

g(t):

generic time function

J ho :

homogeneous nucleation rate of superheated liquid (nuclei/m3 s1)

k b :

Boltzmann constant

m :

mass of the liquid molecule (kg)

N l :

molecule number of per volume liquid (molecule/m3)

P v :

pressure inside bubble (Pa)

P l :

ambient liquid pressure (Pa)

P c :

critical pressure of liquid (Pa)

P atm :

standard atmospheric pressure (Pa)

t :

time (s)

T l :

the liquid temperature (K)

T b :

the normal boiling point (K)

Wg (a, b) :

continuous wavelet transform coefficient, \( W_{{\text{g}}} (a,b) = {\int\limits_t {g(t)\psi _{{{\text{a}},{\text{b}}}} (t){\text{d}}t} } \)

ψ a,b (t) :

wavelet functions, \( \psi _{{{\text{a}},{\text{b}}}} (t) = \frac{1} {{{\sqrt a }}}\psi (t - b/a) \)

σ :

surface tension of the liquid (N/m)

σ b :

the liquid surface tension at normal boiling point (N/m)

ρ lb :

the liquid density at normal boiling point (kg/m3)

References

  1. Asai A (1989) Application of the nucleation theory to the design of bubble jet printers. Jpn J Appl Phys 28:909–915

    Article  Google Scholar 

  2. Park HK et al (1996) Pressure generation and measurement in the rapid vaporization of water on a pulsed-laser-heated surface. J Appl Phys 80:4072–4081

    Article  Google Scholar 

  3. Skripov VP (1974) Metastable liquids. Wiley, New York, pp 90–108

    Google Scholar 

  4. Derewnicki KP (1985) Experimental studies of heat transfer and vapour formation in fast transient boiling. Int J Heat Mass Transf 28:2085–2092

    Article  Google Scholar 

  5. Okuyama K, Iida Y (1990) Transient boiling heat transfer characteristics of nitrogen (bubble behavior and heat transfer rate at stepwise heat generation). Int J Heat Mass Transf 33:2065–2071

    Article  Google Scholar 

  6. Glod S et al (2002) An investigation of microscale explosive vaporization of water on an ultrathin pt wire. Int J Heat Mass Transf 45:367–379

    Article  Google Scholar 

  7. Asai A (1991) Bubble dynamics in boiling under high heat flux pulse heating. ASME J Heat Transf 113:973–979

    Article  Google Scholar 

  8. Iida Y, Okuyama K, Sakurai K (1994) Boiling nucleation on a very small film heater subjected to extremely rapid heating. Int J Heat Mass Transf 37:2771–2780

    Article  Google Scholar 

  9. Zhao Z, Glod S, Poulikakos D (2000) Pressure and power generation during explosive vaporization on a thin-film microheater. Int J Heat Mass Transf 43:281–296

    Article  Google Scholar 

  10. Duffey RB et al (1973) Measurements of transient heat fluxes and vapor generation rates in water. Int J Heat Mass Transf 16:1513–1525

    Article  Google Scholar 

  11. Leung PT et al (1992) Transmission studies of explosive vaporization of a transparent liquid film on an opaque solid surface induced by excimer-laser-pulsed irradiation. J Appl Phys 72:2256–2263

    Article  Google Scholar 

  12. Park HK et al (1996) Transient temperature during the vaporization of liquid on a pulsed laser-heated solid surface. ASME J Heat Transf 118:702

    Article  Google Scholar 

  13. Kim D, Park HK, Grigoropoulos CP (2001) Interferometric probing of rapid vaporization at a solid–liquid interface induced by pulsed-laser irradiation. Int J Heat Mass Transf 44:3843–3853

    Article  Google Scholar 

  14. Li J, Zhang ZF, Liu DY (2001) Experimental and theoretical study on the rapid transient nucleate boiling heat transfer. Prog Nat Sci 11(6):529–535

    Google Scholar 

  15. Jin RX et al (2001) Transient observation on the acetone pool boiling behavior under short pulsed-laser heated. Heat Transf Asia Res 30(4):259–266

    Article  Google Scholar 

  16. Jin R, Huai X, Liu D (2004) Study of rapid transient explosive boiling under short-pulsed laser heating. Prog Nat Sci 14(8):56–60

    Article  Google Scholar 

  17. Huai XL et al (2003) A study of pulsed-laser irradiation induced rapid transient explosive boiling of binary mixture. Sci China 46(5):490–497

    Article  Google Scholar 

  18. Avedisian CT (1985) The homogenous nucleation limits of liquids [j]. J Phys Chem Ref Data 14(3):695–729

    Google Scholar 

  19. Blander M, Katz JL (1975) Bubble nucleation in liquids. AIChE J 21:833–848

    Article  Google Scholar 

  20. Percival DB, Walden AT (2000) Wavelet methods for time series analysis. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  21. Sturtevant B, Shepherd JE (1983) Evaporative instability at the superheat limit. J Fluid Mech 122:85–97

    Google Scholar 

Download references

Acknowledgments

This research is supported by National Natural Science Foundation of China (50576099), the Chinese National Key Foundation Research Subject (No. 2006AA05Z203), and The project of Chinese Academy of Sciences (Y2005009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiulan Huai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huai, X., Wang, G., Jin, R. et al. Microscopic explosive boiling induced by a pulsed-laser irradiation. Heat Mass Transfer 45, 117–126 (2008). https://doi.org/10.1007/s00231-008-0400-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-008-0400-x

Keywords

Navigation