Skip to main content

Advertisement

Log in

Oral cyclosporin A inhibits CD4 T cell P-glycoprotein activity in HIV-infected adults initiating treatment with nucleoside reverse transcriptase inhibitors

  • Clinical Trial
  • Published:
European Journal of Clinical Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

P-glycoprotein limits the tissue penetration of many antiretroviral drugs. The aim of our study was to characterize the effects of the P-glycoprotein substrate cyclosporin A on T cell P-glycoprotein activity in human immunodeficiency virus-infected participants in the AIDS Clinical Trials Group study A5138.

Methods

We studied P-glycoprotein activity on CD4 and CD8 T cells in 16 participants randomized to receive oral cyclosporin A (n = 9) or not (n = 7) during initiation antiretroviral therapy (ART) that did not include protease or non-nucleoside reverse transcriptase inhibitors.

Results

CD4 T cell P-glycoprotein activity decreased by a median of 8 percentage points with cyclosporin A/ART (difference between cyclosporin A/ART vs. ART only, P = 0.001). Plasma trough cyclosporin A concentrations correlated with the change in P-glycoprotein activity in several T cell subsets.

Conclusions

Oral cyclosporin A can inhibit peripheral blood CD4 T cell P-glycoprotein activity. Targeted P-glycoprotein inhibition may enhance the delivery of ART to T cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Thiebaut F, Tsuruo T, Hamada H, Gottesman MM, Pastan I, Willingham MC (1987) Cellular localization of the multidrug-resistance gene product P-glycoprotein in normal human tissues. Proc Natl Acad Sci USA 84:7735–7738

    Article  CAS  PubMed  Google Scholar 

  2. Borst P, Schinkel AH, Smit JJ, Wagenaar E, Van Deemter L, Smith AJ, Eijdems EW, Baas F, Zaman GJ (1993) Classical and novel forms of multidrug resistance and the physiological functions of P-glycoproteins in mammals. Pharmacol Ther 60:289–299

    Article  CAS  PubMed  Google Scholar 

  3. Fromm MF, Kim RB, Stein CM, Wilkinson GR, Roden DM (1999) Inhibition of P-glycoprotein-mediated drug transport: a unifying mechanism to explain the interaction between digoxin and quinidine. Circulation 99:552–557

    CAS  PubMed  Google Scholar 

  4. Mayer U, Wagenaar E, Dorobek B, Beijnen JH, Borst P, Schinkel AH (1997) Full blockade of intestinal P-glycoprotein and extensive inhibition of blood-brain barrier P-glycoprotein by oral treatment of mice with PSC833. J Clin Invest 100:2430–2436

    Article  CAS  PubMed  Google Scholar 

  5. Marzolini C, Paus E, Buclin T, Kim RB (2004) Polymorphisms in human MDR1 (P-glycoprotein): recent advances and clinical relevance. Clin Pharmacol Ther 75:13–33

    Article  CAS  PubMed  Google Scholar 

  6. Kim RB, Fromm MF, Wandel C, Leake B, Wood AJ, Roden DM, Wilkinson GR (1998) The drug transporter P-glycoprotein limits oral absorption and brain entry of HIV-1 protease inhibitors. J Clin Invest 101:289–294

    Article  CAS  PubMed  Google Scholar 

  7. Kim AE, Dintaman JM, Waddell DS, Silverman JA (1998) Saquinavir, an HIV protease inhibitor, is transported by P-glycoprotein. J Pharmacol Exp Ther 286:1439–1445

    CAS  PubMed  Google Scholar 

  8. Srinivas RV, Middlemas D, Flynn P, Fridland A (1998) Human immunodeficiency virus protease inhibitors serve as substrates for multidrug transporter proteins MDR1 and MRP1 but retain antiviral efficacy in cell lines expressing these transporters. Antimicrob Agents Chemother 42:3157–3162

    CAS  PubMed  Google Scholar 

  9. Lee CG, Gottesman MM (1998) HIV-1 protease inhibitors and the MDR1 multidrug transporter. J Clin Invest 101:287–288

    Article  CAS  PubMed  Google Scholar 

  10. Jones K, Bray PG, Khoo SH, Davey RA, Meaden ER, Ward SA, Back DJ (2001) P-Glycoprotein and transporter MRP1 reduce HIV protease inhibitor uptake in CD4 cells: potential for accelerated viral drug resistance? AIDS 15:1353–1358

    Article  CAS  PubMed  Google Scholar 

  11. Jones K, Hoggard PG, Sales SD, Khoo S, Davey R, Back DJ (2001) Differences in the intracellular accumulation of HIV protease inhibitors in vitro and the effect of active transport. AIDS 15:675–681

    Article  CAS  PubMed  Google Scholar 

  12. Turriziani O, Di Marco P, Antonelli G, Dianzani F (2000) May the drug transporter P glycoprotein affect the antiviral activity of human immunodeficiency virus type 1 proteinase inhibitors? Antimicrob Agents Chemother 44:473–474

    Article  CAS  PubMed  Google Scholar 

  13. Donahue JP, Dowdy D, Ratnam KK, Hulgan T, Price J, Unutmaz D, Nicotera J, Raffanti S, Becker M, Haas DW (2003) Effects of nelfinavir and its M8 metabolite on lymphocyte P-glycoprotein activity during antiretroviral therapy. Clin Pharmacol Ther 73:78–86

    Article  CAS  PubMed  Google Scholar 

  14. Drewe J, Gutmann H, Fricker G, Torok M, Beglinger C, Huwyler J (1999) HIV protease inhibitor ritonavir: a more potent inhibitor of P-glycoprotein than the cyclosporine analog SDZ PSC 833. Biochem Pharmacol 57:1147–1152

    Article  CAS  PubMed  Google Scholar 

  15. Washington CB, Duran GE, Man MC, Sikic BI, Blaschke TF (1998) Interaction of anti-HIV protease inhibitors with the multidrug transporter P-glycoprotein (P-gp) in human cultured cells. J Acquir Immune Defic Syndr Hum Retrovirol 19:203–209

    CAS  PubMed  Google Scholar 

  16. Chandler B, Almond L, Ford J, Owen A, Hoggard P, Khoo S, Back D (2003) The effects of protease inhibitors and nonnucleoside reverse transcriptase inhibitors on p-glycoprotein expression in peripheral blood mononuclear cells in vitro. J Acquir Immune Defic Syndr 33:551–556

    Article  CAS  PubMed  Google Scholar 

  17. Perloff MD, Von Moltke LL, Marchand JE, Greenblatt DJ (2001) Ritonavir induces P-glycoprotein expression, multidrug resistance-associated protein (MRP1) expression, and drug transporter-mediated activity in a human intestinal cell line. J Pharm Sci 90:1829–1837

    Article  CAS  PubMed  Google Scholar 

  18. Stormer E, von Moltke LL, Perloff MD, Greenblatt DJ (2002) Differential modulation of P-glycoprotein expression and activity by non-nucleoside HIV-1 reverse transcriptase inhibitors in cell culture. Pharm Res 19:1038–1045

    Article  PubMed  Google Scholar 

  19. Huang L, Wring SA, Woolley JL, Brouwer KR, Serabjit-Singh C, Polli JW (2001) Induction of P-glycoprotein and cytochrome P450 3A by HIV protease inhibitors. Drug Metab Dispos 29:754–760

    CAS  PubMed  Google Scholar 

  20. Lee CG, Ramachandra M, Jeang KT, Martin MA, Pastan I, Gottesman MM (2000) Effect of ABC transporters on HIV-1 infection: inhibition of virus production by the MDR1 transporter. FASEB J 14:516–522

    CAS  PubMed  Google Scholar 

  21. Speck RR, Yu XF, Hildreth J, Flexner C (2002) Differential effects of p-glycoprotein and multidrug resistance protein-1 on productive human immunodeficiency virus infection. J Infect Dis 186:332–340

    Article  CAS  PubMed  Google Scholar 

  22. Johnstone RW, Cretney E, Smyth MJ (1999) P-glycoprotein protects leukemia cells against caspase-dependent, but not caspase-independent, cell death. Blood 93:1075–1085

    CAS  PubMed  Google Scholar 

  23. Smyth MJ, Krasovskis E, Sutton VR, Johnstone RW (1998) The drug efflux protein, P-glycoprotein, additionally protects drug-resistant tumor cells from multiple forms of caspase-dependent apoptosis. Proc Natl Acad Sci USA 95:7024–7029

    Article  CAS  PubMed  Google Scholar 

  24. Kimchi-Sarfaty C, Oh JM, Kim IW, Sauna ZE, Calcagno AM, Ambudkar SV, Gottesman MM (2007) A “silent” polymorphism in the MDR1 gene changes substrate specificity. Science 315:525–528

    Article  CAS  PubMed  Google Scholar 

  25. Fellay J, Marzolini C, Meaden ER, Back DJ, Buclin T, Chave JP, Decosterd LA, Furrer H, Opravil M, Pantaleo G, Retelska D, Ruiz L, Schinkel AH, Vernazza P, Eap CB, Telenti A (2002) Response to antiretroviral treatment in HIV-1-infected individuals with allelic variants of the multidrug resistance transporter 1: a pharmacogenetics study. Lancet 359:30–36

    Article  CAS  PubMed  Google Scholar 

  26. Haas DW, Smeaton LM, Shafer RW, Robbins GK, Morse GD, Labbe L, Wilkinson GR, Clifford DB, D′Aquila RT, De Gruttola V, Pollard RB, Merigan TC, Hirsch MS, George AL Jr, Donahue JP, Kim RB (2005) Pharmacogenetics of long-term responses to antiretroviral regimens containing Efavirenz and/or Nelfinavir: an adult aids clinical trials group study. J Infect Dis 192:1931–1942

    Article  CAS  PubMed  Google Scholar 

  27. Saitoh A, Singh KK, Powell CA, Fenton T, Fletcher CV, Brundage R, Starr S, Spector SA (2005) An MDR1–3435 variant is associated with higher plasma nelfinavir levels and more rapid virologic response in HIV-1 infected children. AIDS 19:371–380

    Article  CAS  PubMed  Google Scholar 

  28. Haas DW, Bartlett JA, Andersen JW, Sanne I, Wilkinson GR, Hinkle J, Rousseau F, Ingram CD, Shaw A, Lederman MM, Kim RB (2006) Pharmacogenetics of nevirapine-associated hepatotoxicity: an adult AIDS clinical trials group collaboration. Clin Infect Dis 43:783–786

    Article  CAS  PubMed  Google Scholar 

  29. Ritchie MD, Haas DW, Motsinger AA, Donahue JP, Erdem H, Raffanti S, Rebeiro P, George AL, Kim RB, Haines JL, Sterling TR (2006) Drug transporter and metabolizing enzyme gene variants and nonnucleoside reverse-transcriptase inhibitor hepatotoxicity. Clin Infect Dis 43:779–782

    Article  CAS  PubMed  Google Scholar 

  30. Ferry DR, Traunecker H, Kerr DJ (1996) Clinical trials of P-glycoprotein reversal in solid tumours. Eur J Cancer 32A:1070–1081

    Article  CAS  PubMed  Google Scholar 

  31. Gandhi L, Harding MW, Neubauer M, Langer CJ, Moore M, Ross HJ, Johnson BE, Lynch TJ (2007) A phase II study of the safety and efficacy of the multidrug resistance inhibitor VX-710 combined with doxorubicin and vincristine in patients with recurrent small cell lung cancer. Cancer 109:924–932

    Article  CAS  PubMed  Google Scholar 

  32. Pusztai L, Wagner P, Ibrahim N, Rivera E, Theriault R, Booser D, Symmans FW, Wong F, Blumenschein G, Fleming DR, Rouzier R, Boniface G, Hortobagyi GN (2005) Phase II study of tariquidar, a selective P-glycoprotein inhibitor, in patients with chemotherapy-resistant, advanced breast carcinoma. Cancer 104:682–691

    Article  CAS  PubMed  Google Scholar 

  33. Rago RP, Einstein A Jr, Lush R, Beer TM, Ko YJ, Henner WD, Bubley G, Merica EA, Garg V, Ette E, Harding MW, Dalton WS (2003) Safety and efficacy of the MDR inhibitor Incel (biricodar, VX-710) in combination with mitoxantrone and prednisone in hormone-refractory prostate cancer. Cancer Chemother Pharmacol 51:297–305

    CAS  PubMed  Google Scholar 

  34. Tsuruo T, Iida H, Tsukagoshi S, Sakurai Y (1982) Increased accumulation of vincristine and adriamycin in drug-resistant P388 tumor cells following incubation with calcium antagonists and calmodulin inhibitors. Cancer Res 42:4730–4733

    CAS  PubMed  Google Scholar 

  35. Watanabe T, Tsuge H, Oh-Hara T, Naito M, Tsuruo T (1995) Comparative study on reversal efficacy of SDZ PSC 833, cyclosporin A and verapamil on multidrug resistance in vitro and in vivo. Acta Oncol 34:235–241

    Article  CAS  PubMed  Google Scholar 

  36. Malingre MM, Richel DJ, Beijnen JH, Rosing H, Koopman FJ, Ten Bokkel Huinink WW, Schot ME, Schellens JH (2001) Coadministration of cyclosporine strongly enhances the oral bioavailability of docetaxel. J Clin Oncol 19:1160–1166

    CAS  PubMed  Google Scholar 

  37. Frassetto L, Thai T, Aggarwal AM, Bucher P, Jacobsen W, Christians U, Benet LZ, Floren LC (2003) Pharmacokinetic interactions between cyclosporine and protease inhibitors in HIV+subjects. Drug Metab Pharmacokinet 18:114–120

    Article  CAS  PubMed  Google Scholar 

  38. Deeks SG, Kitchen CM, Liu L, Guo H, Gascon R, Narvaez AB, Hunt P, Martin JN, Kahn JO, Levy J, McGrath MS, Hecht FM (2004) Immune activation set point during early HIV infection predicts subsequent CD4+ T-cell changes independent of viral load. Blood 104:942–947

    Article  CAS  PubMed  Google Scholar 

  39. Giorgi JV, Hultin LE, McKeating JA, Johnson TD, Owens B, Jacobson LP, Shih R, Lewis J, Wiley DJ, Phair JP, Wolinsky SM, Detels R (1999) Shorter survival in advanced human immunodeficiency virus type 1 infection is more closely associated with T lymphocyte activation than with plasma virus burden or virus chemokine coreceptor usage. J Infect Dis 179:859–870

    Article  CAS  PubMed  Google Scholar 

  40. Lederman MM, Smeaton L, Smith KY, Rodriguez B, Pu M, Wang H, Sevin A, Tebas P, Sieg SF, Medvik K, Margolis DM, Pollard R, Ertl HC, Valdez H (2006) Cyclosporin A provides no sustained immunologic benefit to persons with chronic HIV-1 infection starting suppressive antiretroviral therapy: results of a randomized, controlled trial of the AIDS Clinical Trials Group A5138. J Infect Dis 194:1677–1685

    Article  CAS  PubMed  Google Scholar 

  41. Hulgan T, Donahue JP, Hawkins C, Unutmaz D, D′Aquila RT, Raffanti S, Nicotera F, Rebeiro P, Erdem H, Rueff M, Haas DW (2003) Implications of T-cell P-glycoprotein activity during HIV-1 infection and its therapy. J Acquir Immune Defic Syndr 34:119–126

    Article  CAS  PubMed  Google Scholar 

  42. Minderman H, Vanhoefer U, Toth K, Yin MB, Minderman MD, Wrzosek C, Slovak ML, Rustum YM (1996) DiOC2(3) is not a substrate for multidrug resistance protein (MRP)-mediated drug efflux. Cytometry 25:14–20

    Article  CAS  PubMed  Google Scholar 

  43. Chaudhary PM, Mechetner EB, Roninson IB (1992) Expression and activity of the multidrug resistance P-glycoprotein in human peripheral blood lymphocytes. Blood 80:2735–2739

    CAS  PubMed  Google Scholar 

  44. Park SW, Lomri N, Simeoni LA, Fruehauf JP, Mechetner E (2003) Analysis of P-glycoprotein-mediated membrane transport in human peripheral blood lymphocytes using the UIC2 shift assay. Cytometry A 53:67–78

    Article  PubMed  Google Scholar 

  45. Berruet N, Sentenac S, Auchere D, Gimenez F, Farinotti R, Fernandez C (2005) Effect of efavirenz on intestinal P-glycoprotein and hepatic p450 function in rats. J Pharm Pharm Sci 8:226–234

    CAS  PubMed  Google Scholar 

  46. Shaik N, Giri N, Pan G, Elmquist WF (2007) P-glycoprotein-mediated active efflux of the anti-HIV1 nucleoside abacavir limits cellular accumulation and brain distribution. Drug Metab Dispos 35:2076–2085

    Article  CAS  PubMed  Google Scholar 

  47. Storch CH, Theile D, Lindenmaier H, Haefeli WE, Weiss J (2007) Comparison of the inhibitory activity of anti-HIV drugs on P-glycoprotein. Biochem Pharmacol 73:1573–1581

    Article  CAS  PubMed  Google Scholar 

  48. Giri N, Shaik N, Pan G, Terasaki T, Mukai C, Kitagaki S, Miyakoshi N, Elmquist WF (2008) Investigation of the role of breast cancer resistance protein (Bcrp/Abcg2) on pharmacokinetics and central nervous system penetration of abacavir and zidovudine in the mouse. Drug Metab Dispos 36:1476–1484

    Article  CAS  PubMed  Google Scholar 

  49. Motwani B, Khayr W (2006) Pharmacoenhancement of protease inhibitors. Am J Ther 13:57–63

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank the patients who participated in the study and the following investigators who contributed to A5138: Tania George (Bristol-Myers Squibb, Plainsboro, NJ); Kathy Burgner, Jane Baum, and Steve Arrington (Case Western Reserve University, Cleveland, OH); Laurie Myers and Janeen Duffy (Frontier Science and Technology Research Foundation, Buffalo, NY); Dr. Jerry M. Tolson (GlaxoSmithKline, Research Triangle, NC); Dr. W. Keith Henry (Hennipen County Medical Center, Minneapolis, MN); Dr. Elizabeth Adams and Elaine Ferguson (National Institutes of Health, Division of AIDS, Bethesda, MD); Dr. Harold A. Kessler (Rush-Presbyterian–St. Luke′s Medical Center, Chicago, IL); Nasreen Jahed and Dr. Tine De Marez (Social and Scientific Systems, Silver Spring, MD); Monique Givens (University of Colorado, Denver).

Financial interest disclosures

A5138 was supported by the AIDS Clinical Trials Group funded by the National Institute of Allergy and Infectious Diseases (AI68636). The content of this manuscript is solely the responsibility of the authors and does not necessarily represent the official views of the National Institute of Allergy and Infectious Diseases or the National Institutes of Health. Additional grant support included a Vanderbilt Clinical Research Scholars award (K12 RR17697) and K23 AT02508 (T.H.); AI38855 (L.S., M.P., H.W.); AI25879 and AI36219 (M.M.L.); AI69423 and AI50410 (C.P.); AI069439, AI54999, and MH071205 (D.W.H.). Pharmaceutical support for A5138 was provided by GlaxoSmithKline and Bristol-Myers Squibb. T.H. has received research funding from Merck & Co., Inc. D.W.H. has received research grants from Bavarian Nordic, Boehringer-Ingelheim, Bristol-Myers Squibb, Gilead Sciences, Merck, Tanox, and Tibotec, and is on Scientific Advisory Boards for GlaxoSmithKline and Tibotec. The other authors have no potential conflicts to declare.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Todd Hulgan.

Additional information

These data were previously presented in part at the 13th Conference on Retroviruses and Opportunistic Infections, February 2006, Denver, CO (abstract 564).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hulgan, T., Donahue, J.P., Smeaton, L. et al. Oral cyclosporin A inhibits CD4 T cell P-glycoprotein activity in HIV-infected adults initiating treatment with nucleoside reverse transcriptase inhibitors. Eur J Clin Pharmacol 65, 1081–1088 (2009). https://doi.org/10.1007/s00228-009-0725-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00228-009-0725-5

Keywords

Navigation