Skip to main content
Log in

First highlight of sound production in the glassy sweeper Pempheris schomburgkii (Pempheridae)

  • Original Paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Many sounds produced by fishes remain to be described. Understanding sound production for vocal species would permit the development of passive acoustic monitoring of fish diversity. The present study investigated sound production in the glassy sweeper Pempheris schomburgkii in Guadeloupe reefs, French West Indies. Two recording approaches were used: passive acoustic monitoring in the wild and active recordings with hand-held individuals in captivity. Calls consisted of series of harmonic pop sounds with a dominant frequency of 360 Hz. On coral reefs, they were produced in chorus, starting after sunset and lasting up to 3 h. Sounds recorded in situ were longer with more pulses than sounds recorded from captive specimens. These differences in temporal features suggest two types of sounds: acoustic signals that act as distress calls and those that might be involved in group-level activities such as group cohesion and reproduction. A morphological study was also performed to describe the anatomy of the sound production apparatus which consisted of a pair of large sonic muscles which inserted dorsally on a contractible anterior part of the swim bladder. Contractions of these muscles extend rostrally this part of the swim bladder while an inner sheet of elastic connective tissue acts as a recoiling system to help the swim bladder recover its initial position during relaxation of the sonic muscles. The present results, therefore, contribute to the description of sound production by fishes found in an underexplored region and further illustrate how passive acoustics may be used to monitor fish populations in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and material

Data will be made fully available upon reasonable request to FB.

References

  • Abràmoff MD, Magalhães PJ, Ram SJ (2004) Image processing with Image. J Biophoton Int 11:36–42

    Google Scholar 

  • Akamatsu T, Okumura T, Novarini N, Yan HY (2002) Empirical refinements applicable to the recording of fish sounds in small tanks. J Acoust Soc Am 112:3073–3082

    Article  PubMed  Google Scholar 

  • Amorim MCP (2006) Diversity in sound production in fish. In: Ladich F, Collin SP, Moller P, Kapoor BG (eds) Communication in fishes. Science Publishers Inc., Enfield, pp 71–105

    Google Scholar 

  • Bass AH, Ladich F (2008) Vocal-acoustic communication: from behavior to neurons. In: Popper AN, Fay RR, Webb JF (eds) Fish Bioacoustics. Springer, New York, pp 253–278

    Chapter  Google Scholar 

  • Bertucci F, Maratrat K, Berthe C, Besson M, Guerra AS, Raick X, Lerouvreur F, Lecchini D, Parmentier E (2020) Local sonic activity reveals potential partitioning in a coral reef fish community. Oecologia 193:125–134

    Article  PubMed  Google Scholar 

  • Bertucci F, Parmentier E, Lecellier G, Hawkins AD, Lecchini D (2016) Acoustic indices provide information on the status of coral reefs: an example from Moorea Island in the South Pacific. Sci Rep 6:33326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bertucci F, Lejeune P, Payrot J, Parmentier E (2015) Sound production by dusky grouper Epinephelus marginatus at spawning aggregation sites. J Fish Biol 87:400–421

    Article  CAS  PubMed  Google Scholar 

  • Betancur RR, Broughton RE, Wiley EO, Carpenter K, López JA, Li C, et al. (2013) The Tree of Life and a New Classification of Bony Fishes. Edition 1. PLOS Currents Tree of Life Apr 18

  • Bosher B, Newton S, Fine M (2006) The spine of the channel catfish, Ictalurus punctatus, as an anti-predator adaptation: An experimental study. Ethology 112:188–195

    Article  Google Scholar 

  • Collette B, Dooley J, Aiken KA, Marechal J, Pina Amargos F, Singh-Renton KR (2015) Pempheris schomburgkii. The IUCN Red List of Threatened Species 2015:e.T16749725A16750102

    Google Scholar 

  • Colleye O, Frederich B, Vandewalle P, Casadevall M, Parmentier E (2009) Agonistic sounds in the skunk clownfish Amphiprion akallopisos: size-related variation in acoustic features. J Fish Biol 75:908–916

    Article  CAS  PubMed  Google Scholar 

  • Connaughton MA, Taylor MH (1995) Seasonal and daily cycles in sound production associated with spawning in the weakfish, Cynoscion regalis. Environ Biol Fish 42:233–240

    Article  Google Scholar 

  • Desiderà E, Guidetti P, Panzalis P, Navone A, Valentini-Poirrier CA, Boissery P, Gervaise C (2019) Acoustic fish communities: sound diversity of rocky habitats reflects fish species diversity. Mar Ecol Prog Ser 608:183–197

    Article  Google Scholar 

  • Erisman BE, Rowell TJ (2017) A sound worth saving: acoustic characteristics of a massive fish spawning aggregation. Biol Lett 13:20170656

    Article  PubMed  PubMed Central  Google Scholar 

  • Fine ML, Parmentier E (2015) Mechanisms of fish sound production. In: Ladich F (ed) Sound Communication in Fishes. Springer, New York, pp 77–126

    Chapter  Google Scholar 

  • Gannon DP (2008) Passive acoustic techniques in fisheries science: a review and prospectus. Trans Am Fish Soc 137:638–656

    Article  Google Scholar 

  • Gladfelter WB (1979) Twilight migrations and foraging activities of the copper sweeper Pempheris schomburgkii (Teleostei: Pempheridae). Mar Biol 50:109–119

    Article  Google Scholar 

  • Hawkins AD, Amorim MCP (2000) Spawning sounds of the male haddock, Melanogrammus aeglefinus. Environ Biol Fish 59:29–41

    Article  Google Scholar 

  • Helfman GS (1986) Fish behaviour by day, night and twilight. In: Pitcher TJ (ed) The behaviour of teleost fishes. Springer, Boston, pp 366–387

    Chapter  Google Scholar 

  • Humann P, Deloach N (2004) Poissons Coralliens, identification, floride caraïbes bahamas, 2e edn. PLB Editions, Guadeloupe

    Google Scholar 

  • Jublier N, Bertucci F, Kéver L, Colleye O, Ballesta L, Nemeth RS, Lecchini D, Rhodes KL, Parmentier E (2020) Passive monitoring of phenological acoustic patterns reveals the sound of the camouflage grouper, Epinephelus polyphekadion. Aquat Cons Mar Fresh Ecosys 30:42–52

    Article  Google Scholar 

  • Kaatz IM (2002) Multiple sound-producing mechanisms in teleost fishes and hypotheses regarding their behavioral significance. Bioacoustics 12:230–233

    Article  Google Scholar 

  • Kéver L, Lejeune P, Michel LN, Parmentier E (2016) Passive acoustic recording of Ophidion rochei calling activity in Calvi Bay (France). Mar Ecol 37:1315–1324

    Article  Google Scholar 

  • Krause J, Ruxton GD (2002) Living in Groups. Editions Broché, Oxford

    Google Scholar 

  • Ladich F, Fine ML (2006) Sound-generating mechanisms in fishes: a unique diversity in vertebrates. In: Ladich F, Collin SP, Moller P, Kapoor BG (eds) Communication in fishes. Science Publishers, Enfield, pp 3–34

    Google Scholar 

  • Lagardère JP, Millot S, Parmentier E (2005) Aspects of sound communication in the pearlfish Carapus boraborensis and Carapus homei (Carapidae). J Exp Zool A 303:1066–1074

    Article  Google Scholar 

  • Larsson M, Abbott BW (2018) Is the capacity for vocal learning in vertebrates rooted in fish schooling behavior? Evol Biol 45:359–373

    Article  PubMed  PubMed Central  Google Scholar 

  • Lobel PS, Kaatz IM, Rice AN (2010) Acoustical behavior of coral reef fishes. In: Cole KS (ed) Reproduction and sexuality in marine fishes: patterns and processes. University of California Press, Berkeley, pp 307–386

    Google Scholar 

  • Lobel PS, Mann DA (1995) Spawning sounds of the damselfish, Dascyllus albisella (Pomacentridae), and relationship to male size. Bioacoustics 6:187–198

    Article  Google Scholar 

  • Lobel PS (2002) Diversity of fish spawning sounds and the application of passive acoustic monitoring. Bioacoustics 12:286–289

    Article  Google Scholar 

  • Lobel P (1992) Sounds produced by spawning fishes. Environ Biol Fish 33:351–358

    Article  Google Scholar 

  • Longrie N, Poncin P, Denoël M, Gennotte V, Delcourt J, Parmentier E (2013) Behaviours associated with acoustic communication in Nile tilapia (Oreochromis niloticus). PLoS ONE 8:e61467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lowerre-Barbieri SK, Barbieri LR, Flanders JR, Woodward AG, Cotton CF, Knowlton MK (2008) Use of passive acoustics to determine red drum spawning in Georgia waters. Trans Am Fish Soc 137:562–575

    Article  Google Scholar 

  • Mann DA, Lobel PS (1998) Acoustic behavior of the damselfish Dascyllus albisella: behavioral and geographic variation. Environ Biol Fish 51:421–428

    Article  Google Scholar 

  • Mok HK, Yeh MW, Kuo SC (1997) Sound characteristics and diurnal vocal activity of sweepers, Pempheris oualensis (Pempheridae, Perciformes). Proc Natl Sci Coun Repub China B 21:175–179

    Google Scholar 

  • Myrberg AAJ, Mohler M, Catala J (1986) Sound production by males of a coral reef fish (Pomacentrus partitus): its significance to females. Anim Behav 34:913–923

    Article  Google Scholar 

  • Parmentier E, Di Iorio L, Picciulin M, Malavasi S, Lagardère JP, Bertucci F (2017) Consistency of spatiotemporal sound features supports the use of passive acoustics for long-term monitoring. Anim Cons 21:211–220

    Article  Google Scholar 

  • Parmentier E, Fine ML (2016) Fish sound production: insights. In: Suthers R, Tecumseh F, Popper AN, Fay RR (eds) Vertebrate sound production and acoustic communication. Springer, New York, pp 19–49

    Chapter  Google Scholar 

  • Parmentier E, Fine ML, Mok HK (2016) Sound production by a recoiling system in the Pempheridae and Terapontidae. J Morphol 277:717–724

    Article  PubMed  Google Scholar 

  • Parmentier E, Tock J, Falguière JC, Beauchaud M (2014) Sound production in Sciaenops ocellatus: Preliminary study for the development of acoustic cues in aquaculture. Aquaculture 432:204–211

    Article  Google Scholar 

  • Parmentier E, Vandewalle P, Brié C, Dinraths L, Lecchini D (2011a) Comparative study on sound production in different Holocentridae species. Front Zool 8:12

    Article  PubMed  PubMed Central  Google Scholar 

  • Parmentier E, Boyle KS, Berten L, Brié C, Lecchini D (2011b) Sound production and mechanism in Heniochus chrysostomus (Chaetodontidae). J Exp Biol 214:2702–2708

    Article  PubMed  Google Scholar 

  • Parmentier E, Kéver L, Casadevall M, Lecchini D (2010) Diversity and complexity in the acoustic behaviour of Dacyllus flavicaudus (Pomacentridae). Mar Biol 157:2317–2327

    Article  Google Scholar 

  • Pastor Gutiérrez L, Báez Hidalgo M (2003) Características biológicas de la Catalufa cobriza, Pempheris schomburgkii (Pisces: Pempheridae) en la Costa Norte de La Habana, Cuba. Rev Invest Mar 24:127–131

  • Picciulin M, Kéver L, Parmentier E, Bolgan M (2019) Listening to the unseen: passive acoustic monitoring reveals the presence of a cryptic fish species. Aquat Cons Mar Fresh Ecosys 29:202–210

    Article  Google Scholar 

  • Picciulin M, Bolgan M, Codarin A, Fiorin R, Zucchetta M, Malavasi S (2013) Passive acoustic monitoring of Sciaena umbra on rocky habitats in the Venetian littoral zone. Fish Res 145:76–81

    Article  Google Scholar 

  • Picciulin M, Sebastianutto L, Codarin A, Calcagno G, Ferrero EA (2012) Brown meagre vocalization rate increases during repetitive boat noise exposures: a possible case of vocal compensation. J Acoust Soc Am 132:3118–3124

    Article  PubMed  Google Scholar 

  • Radford CA, Ghazali S, Jeffs AG, Montgomery JC (2015) Vocalisations of the bigeye Pempheris adspersa: characteristics, source level and active space. J Exp Biol 218:940–948

    Article  PubMed  Google Scholar 

  • Rehberg-Besler N, Doucet SM, Mennill DJ (2017) Overlapping vocalizations produce far-reaching choruses: a test of the signal enhancement hypothesis. Behav Ecol 28:494–499

    Google Scholar 

  • Risch D, Parks SE (2017) Biodiversity assessment and environmental monitoring in freshwater and marine biomes using ecoacoustics. In: Farina A, Gage SH (eds) Ecoacoustics. The ecological role of sounds, Wiley, Oxford, pp 145–168

    Chapter  Google Scholar 

  • Rountree RA, Gilmore RG, Goudey CA, Hawkins AD, Luczkovich JJ, Mann DA (2006) Listening to fish. Fisheries 31:433–446

    Article  Google Scholar 

  • Rowell T, Nemeth R, Schärer M, Appeldoorn R (2015) Fish sound production and acoustic telemetry reveal behaviors and spatial patterns associated with spawning aggregations of two Caribbean groupers. Mar Ecol Prog Ser 518:239–254

    Article  Google Scholar 

  • Ruppé L, Clément G, Herrel A, Ballesta L, Décamps T, Kéver L, Parmentier E (2015) Environmental constraints drive the partitioning of the soundscape in fishes. Proc Nat Acad Sci 112:6092–6097

    Article  PubMed  Google Scholar 

  • Slabbekoorn H, Bouton N, van Opzeeland I, Coers A, ten Cate C, Popper AN (2010) A noisy spring: the impact of globally rising underwater sound levels on fish. Trends Ecol Evol 25:419–427

    Article  PubMed  Google Scholar 

  • Sueur J, Farina A (2015) Ecoacoustics: the ecological investigation and interpretation of environmental sound. Biosemiotics 8:493–502

    Article  Google Scholar 

  • Takayama M, Onuki A, Yosino T, Yoshimoto M, Ito H, Kohbara J, Somiya H (2003) Sound characteristics and the sound producing system in silver sweeper, Pempheris schwenkii (Perciformes: Pempheridae). J Mar Biol Assoc Unit King 83:1317–1320

    Article  Google Scholar 

  • Tavolga WN, Popper AN, Fay RR (2012) Hearing and Sound Communication in Fishes. Springer, New York

    Google Scholar 

  • Vasconcelos RO, Amorim MCP, Ladich F (2007) Effects of ship noise on the detectability of communication signals in the Lusitanian toadfish. J Exp Biol 210:2104–2112

    Article  PubMed  Google Scholar 

  • Walters S, Lowerre-Barbieri S, Bickford J, Mann D (2009) Using a passive acoustic survey to identify spotted seatrout spawning sites and associated habitat in Tampa Bay, Florida. Trans Am Fish Soc 138:88–98

    Article  Google Scholar 

  • Zanette I, Zhou T, Burvall A, Lundström U, Larsson DH, Zdora M, Thibault P, Pfeiffer F, Hertz HM (2014) Speckle-based x-ray phase-contrast and dark-field imaging with a laboratory source. Phys Rev Lett 112:253903

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Lily Fogg for her assistance in English editing and proofreading of the final version of our manuscript. We also thank two anonymous reviewers for their comments.

Funding

This work was supported by several grants: Fondation de France (2019–08602), LabEx CORAIL (project 2018 Emul), ANR-19-CE34-0006-Manini.

Author information

Authors and Affiliations

Authors

Contributions

FB, EP, DL and MR-T designed the study. FB, EP, SC and DL collected the data. FB, EP and AH analysed the data. FB wrote the manuscript. All the authors contributed to substantial revisions.

Corresponding author

Correspondence to Frédéric Bertucci.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest and no competing interests.

Ethical approval

The research required no permits and morphology investigations followed rules approved by the ethical commission of the University of Liège.

Consent for publication

All listed authors agreed on the publication of the present research and accepted responsibility for the work presented here.

Additional information

Responsible Editor: D. Goulet.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Reviewed by M.T. Schärer and an undisclosed expert.

Supplementary Information

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (WAV 132 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bertucci, F., Parmentier, E., Hillion, A. et al. First highlight of sound production in the glassy sweeper Pempheris schomburgkii (Pempheridae). Mar Biol 168, 32 (2021). https://doi.org/10.1007/s00227-021-03829-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00227-021-03829-8

Navigation