Skip to main content
Log in

Implications of differences in macromolecular composition of stem fractions for processing of Scots pine

Wood Science and Technology Aims and scope Submit manuscript

Abstract

Use of wood feedstocks for sugar-based biorefineries requires suitable treatments of the various tree fractions to optimize yields. In the current study, stem wood fractions (sapwood, heartwood and knotwood) were sampled at different heights from well-documented Scots pine trees taken from two contrasting stands. The fractions were assessed in terms of chemical composition, response to SO2-catalysed steam pretreatment and enzymatic digestibility. There were significant differences in total extractive contents between the fractions, where the heartwood fractions had an extractive content 1–3 wt% higher than sapwood (corresponding to a relative increase of 20–60 %) for samples at the same height. In contrast, the differences in macromolecular carbohydrate contents between the fractions were smaller and mainly insignificant. One exception was the xylan content, which was higher in heartwood than in sapwood at the same tree height (a relative difference of 10–15 %). Steam pretreatment resulted in a clearly higher degree of hydrolysis for sapwood than for heartwood at the same conditions. However, at optimal pretreatment temperatures a higher total sugar yield was in fact obtained for heartwood, showing the importance of tuning the process conditions for the respective wood fractions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

References

  • Almeida JRM, Bertilsson M, Gorwa-Grauslund MF, Gorsich S, Liden G (2009) Metabolic effects of furaldehydes and impacts on biotechnological processes. Appl Microbiol Biotechnol 82:625–638

    Article  CAS  PubMed  Google Scholar 

  • Alvira P, Tomás-Pejó E, Ballesteros M, Negro MJ (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol 101:4851–4861

    Article  CAS  PubMed  Google Scholar 

  • Arshadi M, Backlund I, Geladi P, Bergsten U (2013) Comparison of fatty and resin acid composition in boreal lodgepole pine and Scots pine for biorefinery applications. Ind Crops Prod 49:535–541

    Article  CAS  Google Scholar 

  • Barnett JR, Bonham VA (2004) Cellulose microfibril angle in the cell wall of wood fibres. Biol Rev 79:461–472

    Article  CAS  PubMed  Google Scholar 

  • Bertaud F, Holmbom B (2004) Chemical composition of earlywood and latewood in Norway spruce heartwood, sapwood and transition zone wood. Wood Sci Technol 38:245–256

    Article  CAS  Google Scholar 

  • Björklund Jansson M, Nilvebrant N-O (2009) Wood extractives. In: Ek M, Gellerstedt G, Henriksson G (eds) Pulp and paper chemistry and Technology. Wood chemistry and wood biotechnology, vol 1. Walter de Gruyter, Berlin, pp 147–171

    Google Scholar 

  • Bondesson P-M, Galbe M, Zacchi G (2014) Comparison of energy potentials from combined ethanol and methane production using steam-pretreated corn stover impregnated with acetic acid. Biomass Bioenergy 67:413–424

    Article  CAS  Google Scholar 

  • Börjesson J, Engqvist M, Sipos B, Tjerneld F (2007) Effect of poly(ethylene glycol) on enzymatic hydrolysis and adsorption of cellulase enzymes to pretreated lignocellulose. Enzyme Microb Technol 41:186–195

    Article  Google Scholar 

  • Boussaid A-L, Esteghlalian AR, Gregg DJ, Lee KH, Saddler JN (2000) Steam pretreatment of Douglas-fir wood chips. Appl Biochem Biotechnol 84–86:693–705

    Article  PubMed  Google Scholar 

  • Clark TA, Mackie KL (2007) Steam explosion of the softwood pinus radiata with sulphur dioxide addition. I. Process optimisation. J Wood Chem Technol 7:373–403

    Article  Google Scholar 

  • DeMartini JD, Wyman CE (2011) Changes in composition and sugar release across the annual rings of populus wood and implications on recalcitrance. Bioresour Technol 102:1352–1358

    Article  CAS  PubMed  Google Scholar 

  • Ewanick SM, Bura R, Saddler JN (2007) Acid-catalyzed steam pretreatment of lodgepole pine and subsequent enzymatic hydrolysis and fermentation to ethanol. Biotechnol Bioeng 98:737–746

    Article  CAS  PubMed  Google Scholar 

  • Galbe M, Zacchi G (2012) Pretreatment: the key to efficient utilization of lignocellulosic materials. Biomass Bioenergy 46:70–78

    Article  CAS  Google Scholar 

  • Gjerdrum P (2003) Heartwood in relation to age and growth rate in Pinus sylvestris L. in Scandinavia. Forestry 76:413–424

    Article  Google Scholar 

  • Hamilton JK, Partlow EV, Thompson NS (1960) The nature of a galactoglucomannan associated with wood cellulose from southern pine. J Am Chem Soc 82:451–457

    Article  CAS  Google Scholar 

  • Henriksson G, Brännvall E, Lennholm H (2009) Wood chemistry and wood biotechnology. In: Ek M, Gellerstedt G, Henriksson G (eds) Wood chem biotechnol. Walter de Gruyter, Berlin, pp 13–44

    Google Scholar 

  • Hillis WE (1987) Heartwood and tree exudates. Springer, Berlin (268 pp)

    Book  Google Scholar 

  • Janssen R, Turhollow AF, Rutz D, Mergner R (2013) Production facilities for second-generation biofuels in the USA and the EU—current status and future perspectives. Biofuels Bioprod Biorefining 7:647–665

    Article  CAS  Google Scholar 

  • Jozsa LA, Middleton GR (1994) A discussion of wood quality attributes and their practical implications. Canadian forest service publications special publication No. SP-34

  • Kamm B, Kamm M (2007) Biorefineries-multi product processes. Adv Biochem Eng Biotechnol 105:175–204

    CAS  PubMed  Google Scholar 

  • Lynd LR, Wyman C, Laser M, Johnson D, Landucci R (2005) Strategic biorefinery analysis: analysis of biorefineries. Subcontract report NREL/SR-510-35578

  • Mäki-Arvela P, Salminen E, Riittonen T, Virtanen P, Kumar N, Mikkola J-P (2012) The challenge of efficient synthesis of biofuels from lignocellulose for future renewable transportation fuels. Int J Chem Eng. doi:10.1155/2012/674761

    Google Scholar 

  • Monavari S, Galbe M, Zacchi G (2009) Impact of impregnation time and chip size on sugar yield in pretreatment of softwood for ethanol production. Bioresour Technol 100:6312–6316

    Article  CAS  PubMed  Google Scholar 

  • Nilsson P, Cory N, Fridman J, Kempe G (2013) Forest statistics 2013: Official Statistics of Sweden. Swedish University of Agricultural Sciences, Umeå

    Google Scholar 

  • Normark M, Winestrand S, Lestander TA, Jönsson LJ (2014) Analysis, pretreatment and enzymatic saccharification of different fractions of Scots pine. BMC Biotechnol 14:20

    Article  PubMed Central  PubMed  Google Scholar 

  • Palmqvist E, Hahn-Hägerdal B (2000) Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanisms of inhibition. Bioresour Technol 74:25–33

    Article  CAS  Google Scholar 

  • Puentes Rodriguez Y, Puhakka-Tarvainen H, Pastinen O, Siika-aho M, Alvila L, Turunen O, Morales L, Pappinen A (2012) Susceptibility of pretreated wood sections of Norway spruce (Picea abies) clones to enzymatic hydrolysis. Can J For Res 42:38–46

    Article  Google Scholar 

  • Ragauskas AJ, Nagy M, Kim DH, Eckert CA, Hallett JP, Liotta CL (2006) From wood to fuels: integrating biofuels and pulp production. Ind Biotechnol 2:55–65

    Article  CAS  Google Scholar 

  • Robinson J, Keating JD, Boussaid A, Mansfield S, Saddler J (2002) The influence of bark on the fermentation of Douglas-fir whitewood pre-hydrolysates. Appl Microbiol Biotechnol 59:443–448

    Article  CAS  PubMed  Google Scholar 

  • Saeman JF (1945) Kinetics of wood saccharification-hydrolysis of cellulose and decomposition of sugars in dilute acid at high temperature. Ind Eng Chem 37:43–52

    Article  CAS  Google Scholar 

  • Sannigrahi P, Kim DH, Jung S, Ragauskas A (2011) Pseudo-lignin and pretreatment chemistry. Energy Environ Sci 4:1306–1310

    Article  CAS  Google Scholar 

  • Sjöström E (1993) Wood chemistry: fundamentals and application. Academic Press, San Diego

    Google Scholar 

  • Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D (2008a) Determination of sugars, byproducts, and degradation products in liquid Fraction process samples. Technical report NREL/TP-510-42623

  • Sluiter A, Ruiz R, Scarlata C, Sluiter J, Templeton D (2008b) Determination of extractives in biomass. Technical report NREL/TP-510-42619

  • Sluiter A, Crocker D, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D (2008c) Determination of structural carbohydrates and lignin in biomass. Technical report NREL/TP-510-42618

  • Söderholm P, Lundmark R (2009) Forest-based biorefineries: implications for market behavior and policy. For Prod J 59:6–16

    Google Scholar 

  • Stenberg K, Tengborg C, Galbe M, Zacchi G (1998) Optimisation of steam pretreatment of SO2-impregnated mixed softwoods for ethanol production. J Chem Technol Biotechnol 71:299–308

    Article  CAS  Google Scholar 

  • Teleman A (2009) Hemicelluloses and pectins. In: Ek M, Gellerstedt G, Henriksson G (eds) Wood chem wood biotechnol. Walter de Gruyter, Berlin, pp 101–120

    Google Scholar 

  • Weiss ND, Stickel JJ, Wolfe JL, Nguyen QA (2010) A simplified method for the measurement of insoluble solids in pretreated biomass slurries. Appl Biochem Biotechnol 162:975–987

    Article  CAS  PubMed  Google Scholar 

  • Willför S, Holmbom B (2004) Isolation and characterisation of water soluble polysaccharides from Norway spruce and Scots pine. Wood Sci Technol 38:173–179

    Article  Google Scholar 

  • Willför S, Sundberg A, Hemming J, Holmbom B (2005a) Polysaccharides in some industrially important softwood species. Wood Sci Technol 39:245–257

    Article  Google Scholar 

  • Willför S, Sundberg A, Rehn P, Holmbom BR, Saranpää PT (2005b) Distribution of lignans in knots and adjacent stemwood of Picea abies. Holz Roh-Werkst 63:353–357

    Article  Google Scholar 

  • Wiman M, Dienes D, Hansen M, van der Meulen T, Zacchi G, Liden G (2012) Cellulose accessibility determines the rate of enzymatic hydrolysis of steam-pretreated spruce. Bioresour Technol 126:208–215

    Article  CAS  PubMed  Google Scholar 

  • Xu Z, Huang F (2014) Pretreatment methods for bioethanol production. Appl Biochem Biotechnol 174:43–62

    Article  CAS  PubMed  Google Scholar 

  • Zhang C, Lei X, Scott CT, Zhu JY, Li K (2014) Comparison of dilute acid and sulfite pretreatment for enzymatic saccharification of earlywood and latewood of Douglas fir. Bioenergy Res 7:362–370

    Article  CAS  Google Scholar 

  • Zobel BJ, van Buijtenen JP (1989) Wood Variation Its Causes and Control. Springer, Heidelberg

    Book  Google Scholar 

Download references

Acknowledgments

The authors are grateful for financial support from the Bo Rydin Foundation for Scientific Research to the project TALLRAFF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gunnar Lidén.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Johansson, S., Carlqvist, K., Kataria, R. et al. Implications of differences in macromolecular composition of stem fractions for processing of Scots pine. Wood Sci Technol 49, 1037–1054 (2015). https://doi.org/10.1007/s00226-015-0739-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00226-015-0739-3

Keywords

Navigation