Skip to main content

Advertisement

Log in

Cortical Bone Loss in a Spontaneous Murine Model of Systemic Lupus Erythematosus

  • Original Research
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Patients with systemic lupus erythematosus (SLE), a chronic inflammatory disease characterized by loss of T- and B-cell tolerance to autoantigens, are at increased risk for osteoporosis and fractures. Mice deficient in Fc gamma receptor IIb (FcγRIIB) exhibit spontaneous SLE and its restoration rescues the disease. To determine whether deleting FcγRIIB affects cortical bone mass and mechanical properties, we analyzed cortical bone phenotype of FcγRIIB knockouts at different ages. FACS analysis revealed that 6-month-old FcγRIIB−/− mice had increased B220lowCD138+ cells, markers of plasma cells, indicating active SLE disease. In contrast, 3-month-old FcγRIIB−/− mice did not develop the active SLE disease. µCT analysis indicated that FcγRIIB deletion did not affect cortical bone in 3-month-old mutants. However, 6- and 10-month-old FcγRIIB−/− males and females had osteopenic cortical bone and the severity of bone loss increased with disease duration. FcγRIIB deletion decreased cross-sectional area, cortical area, and marrow area in 6-month-old males. Cortical area and cortical thickness were decreased in 10-month-old FcγRIIB−/− males. Lack of FcγRIIB decreased cortical thickness without affecting cortical area in females. However, deletion of a single FcγRIIB allele was insufficient to induce cortical bone loss. The bending strength was decreased in 6- and 10-month-old FcγRIIB-deficient males compared to WT controls. A microindentation analysis demonstrated significantly decreased hardness in both 10-month-old FcγRIIB−/− males and females. Our data indicate that FcγRIIB contributes to the regulation of cortical bone homeostasis subsequent to SLE development and that deletion of FcγRIIB in mice leads to SLE-like disease associated with cortical bone loss and decreased bending strength and hardness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Yacoub Wasef SZ (2004) Gender differences in systemic lupus erythematosus. Gend Med 1(1):12–17. https://doi.org/10.1016/S1550-8579(04)80006-8

    Article  PubMed  Google Scholar 

  2. Schwartzman-Morris J, Putterman C (2012) Gender differences in the pathogenesis and outcome of lupus and of lupus nephritis. Clin Dev Immunol 2012:604892. https://doi.org/10.1155/2012/604892

    Article  PubMed  PubMed Central  Google Scholar 

  3. Crosslin KL, Wiginton KL (2011) Sex differences in disease severity among patients with systemic lupus erythematosus. Gend Med 8(6):365–371. https://doi.org/10.1016/j.genm.2011.10.003

    Article  PubMed  Google Scholar 

  4. de Carvalho JF, do Nascimento AP, Testagrossa LA, Barros RT, Bonfa E (2010) Male gender results in more severe lupus nephritis. Rheumatol Int 30(10):1311–1315. https://doi.org/10.1007/s00296-009-1151-9

    Article  PubMed  Google Scholar 

  5. Andrade RM, Alarcon GS, Fernandez M, Apte M, Vila LM, Reveille JD (2007) Accelerated damage accrual among men with systemic lupus erythematosus: XLIV. Results from a multiethnic US cohort. Arthritis Rheum 56(2):622–630. https://doi.org/10.1002/art.22375

    Article  PubMed  Google Scholar 

  6. Zhu TY, Griffith JF, Au SK, Tang XL, Kwok AW, Leung PC, Li EK, Tam LS (2014) Bone mineral density change in systemic lupus erythematosus: a 5-year followup study. J Rheumatol 41(10):1990–1997. https://doi.org/10.3899/jrheum.131190

    Article  PubMed  Google Scholar 

  7. Bultink IE, Lems WF, Kostense PJ, Dijkmans BA, Voskuyl AE (2005) Prevalence of and risk factors for low bone mineral density and vertebral fractures in patients with systemic lupus erythematosus. Arthritis Rheum 52(7):2044–2050. https://doi.org/10.1002/art.21110

    Article  PubMed  Google Scholar 

  8. Garcia-Carrasco M, Mendoza-Pinto C, Escarcega RO, Jimenez-Hernandez M, Etchegaray Morales I, Munguia Realpozo P, Rebollo-Vazquez J, Soto-Vega E, Deleze M, Cervera R (2009) Osteoporosis in patients with systemic lupus erythematosus. Isr Med Assoc J 11(8):486–491

    PubMed  Google Scholar 

  9. Dominiak B, Oxberry W, Chen P (2005) Study on a nonhealing fracture from a patient with systemic lupus erythematosus and its pathogenetic mechanisms. Ultrastruct Pathol 29(2):107–120

    Article  Google Scholar 

  10. Zhao R (2012) Immune regulation of osteoclast function in postmenopausal osteoporosis: a critical interdisciplinary perspective. Int J Med Sci 9(9):825–832. https://doi.org/10.7150/ijms.5180

    Article  PubMed  PubMed Central  Google Scholar 

  11. Lee YM, Fujikado N, Manaka H, Yasuda H, Iwakura Y (2010) IL-1 plays an important role in the bone metabolism under physiological conditions. Int Immunol 22(10):805–816. https://doi.org/10.1093/intimm/dxq431

    Article  CAS  PubMed  Google Scholar 

  12. Umare V, Pradhan V, Nadkar M, Rajadhyaksha A, Patwardhan M, Ghosh KK, Nadkarni AH (2014) Effect of proinflammatory cytokines (IL-6, TNF-alpha, and IL-1beta) on clinical manifestations in Indian SLE patients. Mediat Inflamm 2014:385297. https://doi.org/10.1155/2014/385297

    Article  CAS  Google Scholar 

  13. Li X, Liu L, Meng D, Wang D, Zhang J, Shi D, Liu H, Xu H, Lu L, Sun L (2012) Enhanced apoptosis and senescence of bone-marrow-derived mesenchymal stem cells in patients with systemic lupus erythematosus. Stem Cells Dev 21(13):2387–2394. https://doi.org/10.1089/scd.2011.0447

    Article  CAS  PubMed  Google Scholar 

  14. Sen D, Keen RW (2001) Osteoporosis in systemic lupus erythematosus: prevention and treatment. Lupus 10(3):227–232. https://doi.org/10.1191/096120301671413439

    Article  CAS  PubMed  Google Scholar 

  15. Bruhns P, Jonsson F (2015) Mouse and human FcR effector functions. Immunol Rev 268(1):25–51. https://doi.org/10.1111/imr.12350

    Article  CAS  PubMed  Google Scholar 

  16. Smith KG, Clatworthy MR (2010) FcgammaRIIB in autoimmunity and infection: evolutionary and therapeutic implications. Nat Rev Immunol 10(5):328–343. https://doi.org/10.1038/nri2762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bolland S, Ravetch JV (2000) Spontaneous autoimmune disease in Fc(gamma)RIIB-deficient mice results from strain-specific epistasis. Immunity 13(2):277–285

    Article  CAS  Google Scholar 

  18. McGaha TL, Sorrentino B, Ravetch JV (2005) Restoration of tolerance in lupus by targeted inhibitory receptor expression. Science 307(5709):590–593. https://doi.org/10.1126/science.1105160

    Article  CAS  PubMed  Google Scholar 

  19. Yuasa T, Kubo S, Yoshino T, Ujike A, Matsumura K, Ono M, Ravetch JV, Takai T (1999) Deletion of fcgamma receptor IIB renders H-2(b) mice susceptible to collagen-induced arthritis. J Exp Med 189(1):187–194

    Article  CAS  Google Scholar 

  20. Bagi CM, Hanson N, Andresen C, Pero R, Lariviere R, Turner CH, Laib A (2006) The use of micro-CT to evaluate cortical bone geometry and strength in nude rats: correlation with mechanical testing, pQCT and DXA. Bone 38(1):136–144. https://doi.org/10.1016/j.bone.2005.07.028

    Article  PubMed  Google Scholar 

  21. Su K, Yang H, Li X, Li X, Gibson AW, Cafardi JM, Zhou T, Edberg JC, Kimberly RP (2007) Expression profile of FcgammaRIIb on leukocytes and its dysregulation in systemic lupus erythematosus. J Immunol 178(5):3272–3280

    Article  CAS  Google Scholar 

  22. Espeli M, Smith KG, Clatworthy MR (2016) FcgammaRIIB and autoimmunity. Immunol Rev 269(1):194–211. https://doi.org/10.1111/imr.12368

    Article  CAS  PubMed  Google Scholar 

  23. Seeling M, Nimmerjahn F (2015) Unlocking the bone: Fcgamma-receptors and antibody glycosylation are keys to connecting bone homeostasis to humoral immunity. Ann Transl Med 3(12):163. https://doi.org/10.3978/j.issn.2305-5839.2015.06.26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Negishi-Koga T, Gober HJ, Sumiya E, Komatsu N, Okamoto K, Sawa S, Suematsu A, Suda T, Sato K, Takai T, Takayanagi H (2015) Immune complexes regulate bone metabolism through FcRgamma signalling. Nat Commun 6:6637. https://doi.org/10.1038/ncomms7637

    Article  CAS  PubMed  Google Scholar 

  25. Su K, Wu J, Edberg JC, Li X, Ferguson P, Cooper GS, Langefeld CD, Kimberly RP (2004) A promoter haplotype of the immunoreceptor tyrosine-based inhibitory motif-bearing FcgammaRIIb alters receptor expression and associates with autoimmunity. I. Regulatory FCGR2B polymorphisms and their association with systemic lupus erythematosus. J Immunol 172(11):7186–7191

    Article  CAS  Google Scholar 

  26. Bolland S, Yim YS, Tus K, Wakeland EK, Ravetch JV (2002) Genetic modifiers of systemic lupus erythematosus in FcgammaRIIB(-/-) mice. J Exp Med 195(9):1167–1174

    Article  CAS  Google Scholar 

  27. Clynes R, Maizes JS, Guinamard R, Ono M, Takai T, Ravetch JV (1999) Modulation of immune complex-induced inflammation in vivo by the coordinate expression of activation and inhibitory Fc receptors. J Exp Med 189(1):179–185

    Article  CAS  Google Scholar 

  28. Kleinau S, Martinsson P, Heyman B (2000) Induction and suppression of collagen-induced arthritis is dependent on distinct fcgamma receptors. J Exp Med 191(9):1611–1616

    Article  CAS  Google Scholar 

  29. Suzuki Y, Shirato I, Okumura K, Ravetch JV, Takai T, Tomino Y, Ra C (1998) Distinct contribution of Fc receptors and angiotensin II-dependent pathways in anti-GBM glomerulonephritis. Kidney Int 54(4):1166–1174. https://doi.org/10.1046/j.1523-1755.1998.00108.x

    Article  CAS  PubMed  Google Scholar 

  30. Ogbe A, Miao T, Symonds AL, Omodho B, Singh R, Bhullar P, Li S, Wang P (2015) Early growth response genes 2 and 3 regulate the expression of Bcl6 and differentiation of T follicular helper cells. J Biol Chem 290(33):20455–20465. https://doi.org/10.1074/jbc.M114.634816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Erickson LD, Lin LL, Duan B, Morel L, Noelle RJ (2003) A genetic lesion that arrests plasma cell homing to the bone marrow. Proc Natl Acad Sci USA 100(22):12905–12910. https://doi.org/10.1073/pnas.2131686100

    Article  CAS  PubMed  Google Scholar 

  32. Jardinet D, Lefebvre C, Depresseux G, Lambert M, Devogelaer JP, Houssiau FA (2000) Longitudinal analysis of bone mineral density in pre-menopausal female systemic lupus erythematosus patients: deleterious role of glucocorticoid therapy at the lumbar spine. Rheumatology 39(4):389–392

    Article  CAS  Google Scholar 

  33. Lee C, Almagor O, Dunlop DD, Manzi S, Spies S, Chadha AB, Ramsey-Goldman R (2006) Disease damage and low bone mineral density: an analysis of women with systemic lupus erythematosus ever and never receiving corticosteroids. Rheumatology 45(1):53–60. https://doi.org/10.1093/rheumatology/kei079

    Article  CAS  PubMed  Google Scholar 

  34. Sels F, Dequeker J, Verwilghen J, Mbuyi-Muamba JM (1996) SLE and osteoporosis: dependence and/or independence on glucocorticoids. Lupus 5(2):89–92

    Article  CAS  Google Scholar 

  35. Bultink IE (2012) Osteoporosis and fractures in systemic lupus erythematosus. Arthritis Care Res 64(1):2–8. https://doi.org/10.1002/acr.20568

    Article  Google Scholar 

  36. Svenungsson E, Fei GZ, Jensen-Urstad K, de Faire U, Hamsten A, Frostegard J (2003) TNF-alpha: a link between hypertriglyceridaemia and inflammation in SLE patients with cardiovascular disease. Lupus 12(6):454–461. https://doi.org/10.1191/0961203303lu412oa

    Article  CAS  PubMed  Google Scholar 

  37. Frostegard J, Svenungsson E, Wu R, Gunnarsson I, Lundberg IE, Klareskog L, Horkko S, Witztum JL (2005) Lipid peroxidation is enhanced in patients with systemic lupus erythematosus and is associated with arterial and renal disease manifestations. Arthritis Rheum 52(1):192–200. https://doi.org/10.1002/art.20780

    Article  CAS  PubMed  Google Scholar 

  38. Lam J, Takeshita S, Barker JE, Kanagawa O, Ross FP, Teitelbaum SL (2000) TNF-alpha induces osteoclastogenesis by direct stimulation of macrophages exposed to permissive levels of RANK ligand. J Clin Investig 106(12):1481–1488. https://doi.org/10.1172/JCI11176

    Article  CAS  PubMed  Google Scholar 

  39. Onoe Y, Miyaura C, Ito M, Ohta H, Nozawa S, Suda T (2000) Comparative effects of estrogen and raloxifene on B lymphopoiesis and bone loss induced by sex steroid deficiency in mice. J Bone Miner Res 15(3):541–549. https://doi.org/10.1359/jbmr.2000.15.3.541

    Article  CAS  PubMed  Google Scholar 

  40. Li Y, Toraldo G, Li A, Yang X, Zhang H, Qian WP, Weitzmann MN (2007) B cells and T cells are critical for the preservation of bone homeostasis and attainment of peak bone mass in vivo. Blood 109(9):3839–3848. https://doi.org/10.1182/blood-2006-07-037994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Alele JD, Kamen DL, Hunt KJ, Ramsey-Goldman R (2011) Bone geometry profiles in women with and without SLE. J Bone Min Res 26(11):2719–2726. https://doi.org/10.1002/jbmr.466

    Article  Google Scholar 

Download references

Acknowledgements

We thank Anucharte Srijunbarl for his suggestion about microindentation and Dr. Kevin Tompkins for his critical reading of the manuscript.

Funding

This research was funded by the Ratchadapisek Sompoch Endowment Fund (2014), Chulalongkorn University (CU-57-091-IC), and the Faculty of Dentistry, Chulalongkorn University (DRF 61019) to S. Lotinun.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sutada Lotinun.

Ethics declarations

Conflict of interest

Worasit Saiworn, Arthid Thim-uam, Peerapat Visitchanakun, Korakot Atjanasuppat, Jiratha Chantaraaumporn, Jutarat Mokdara, Sirintra Chungchatupornchai, Prapaporn Pisitkun, Asada Leelahavanichkul, Suchit Poolthong, Roland Baron, and Sutada Lotinun declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

The animals were housed at the Faculty of Medicine, Chulalongkorn University and maintained in accordance with the Guide for the Care and Use of Laboratory Animals (eight edition), National Research Council. All procedures were approved by the Institutional Animal Care and Use Committee at Faculty of Medicine, Chulalongkorn University.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saiworn, W., Thim-uam, A., Visitchanakun, P. et al. Cortical Bone Loss in a Spontaneous Murine Model of Systemic Lupus Erythematosus. Calcif Tissue Int 103, 686–697 (2018). https://doi.org/10.1007/s00223-018-0464-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-018-0464-7

Keywords

Navigation