Skip to main content
Log in

Torque response to external perturbation during unconstrained goal-directed arm movements

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

It is unclear to what extent control strategies of 2D reaching movements of the upper limbs also apply to movements with the full seven degrees of freedom (DoFs) including rotation of the forearm. An increase in DoFs may result in increased movement complexity and instability. This study investigates the trajectories of unconstrained reaching movements and their stability against perturbations of the upper arm. Reaching movements were measured using an ultrasound marker system, and the method of inverse dynamics was applied to compute the time courses of joint torques. In full DoF reaching movements, the velocity of some joint angles showed multiple peaks, while the bell-shaped profile of the tangential hand velocity was preserved. This result supports previous evidence that tangential hand velocity is an essential part of the movement plan. Further, torque responses elicited by external perturbation started shortly after perturbation, almost simultaneously with the perturbation-induced displacement of the arm, and were mainly observed in the same joint angles as the perturbation torques, with similar shapes but opposite signs. These results indicate that these torque responses were compensatory and contributed to system stabilization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Atkeson CG, Hollerbach JM (1985) Kinematic features of unrestrained vertical arm movements. J Neurosci 5(9):2318–2330

    CAS  PubMed  Google Scholar 

  • Bernstein NA (1967) The co-ordination and regulation of movements. Pergamon Press, London

  • Berret B, Bonnetblanc F, Papaxanthis C, Pozzo T (2009) Modular control of pointing beyond arm’s length. J Neurosci 29(1):191–205

    Article  CAS  PubMed  Google Scholar 

  • Biess A, Liebermann DG, Flash T (2007) A computational model for redundant human three-dimensional pointing movements: integration of independent spatial and temporal motor plans simplifies movement dynamics. J Neurosci 27(48):13045–13064

    Article  CAS  PubMed  Google Scholar 

  • Burdet E, Osu R, Franklin DW, Yoshioka T, Milner TE, Kawato M (2000) A method for measuring endpoint stiffness during multi-joint arm movements. J Biomech 33(12):1705–1709

    Article  CAS  PubMed  Google Scholar 

  • Burdet E, Tee KP, Mareels I, Milner TE, Chew CM, Franklin DW, Osu R, Kawato M (2006) Stability and motor adaptation in human arm movements. Biol Cybern 94(1):20–32

    Article  CAS  PubMed  Google Scholar 

  • Cecchi G, Griffiths PJ, Taylor S (1986) Stiffness and force in activated frog skeletal muscle fibers. Biophys J 49(2):437–451

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Crago PE, Houk JC, Hasan Z (1976) Regulatory actions of human stretch reflex. J Neurophysiol 39(5):925–935

    CAS  PubMed  Google Scholar 

  • Darainy M, Towhidkhah F, Ostry D (2007) Control of hand impedance under static conditions and during reaching movement. J Neurophysiol 97(4):2676–2685

    Article  PubMed  Google Scholar 

  • d’Avella A, Portone A, Fernandez L, Lacquaniti F (2006) Control of fast-reaching movements by muscle synergy combinations. J Neurosci 26(30):7791–7810

    Article  PubMed  Google Scholar 

  • Fan J, He JP, Tillery SIH (2006) Control of hand orientation and arm movement during reach and grasp. Exp Brain Res 171(3):283–296

    Article  PubMed  Google Scholar 

  • Flash T, Hogan N (1985) The coordination of arm movements—an experimentally confirmed mathematical model. J Neurosci 5(7):1688–1703

    CAS  PubMed  Google Scholar 

  • Frolov AA, Prokopenko RA, Dufosse M, Ouezdou FB (2006) Adjustment of the human arm viscoelastic properties to the direction of reaching. Biol Cybern 94(2):97–109

    Article  CAS  PubMed  Google Scholar 

  • Gomi H, Kawato M (1997) Human arm stiffness and equilibrium-point trajectory during multi-joint movement. Biol Cybern 76(3):163–171

    Article  CAS  PubMed  Google Scholar 

  • Gottlieb GL, Song QL, Almeida GL, Hong DA, Corcos D (1997) Directional control of planar human arm movement. J Neurophysiol 78(6):2985–2998

    CAS  PubMed  Google Scholar 

  • Grimme B, Lipinski J, Schöner G (2012) Naturalistic arm movements during obstacle avoidance in 3D and the identification of movement primitives. Exp Brain Res 222(3):185–200

    Article  PubMed  Google Scholar 

  • Grinyagin IV, Biryukova EV, Maier MA (2005) Kinematic and dynamic synergies of human precision-grip movements. J Neurophysiol 94(4):2284–2294

    Article  CAS  PubMed  Google Scholar 

  • Hasan Z (2005) The human motor control system’s response to mechanical perturbation: should it, can it, and does it ensure stability? J Mot Behav 37(6):484–493

    Article  CAS  PubMed  Google Scholar 

  • Hays AV, Richmond BJ, Optican LM (1982) Unix-based multiple process system for realtime data acquisition and control. WESCON Proc Conf 2:100–105

    Google Scholar 

  • Hogan N (1985) The mechanics of multi-joint posture and movement control. Biol Cybern 52(5):315–331

    Article  CAS  PubMed  Google Scholar 

  • Jindrich D, Courtine G, Liu J, McKay H, Moseanko R, Bernot T, Roy R, Zhong H, Tuszynski M, Reggie Edgerton V (2011) Unconstrained three-dimensional reaching in Rhesus monkeys. Exp Brain Res 209(1):35–50

    Article  PubMed Central  PubMed  Google Scholar 

  • Kawato M (1999) Internal models for motor control and trajectory planning. Curr Opini Neurobiol 9(6):718–727

    Article  CAS  Google Scholar 

  • Khatib O (1987) A unified approach for motion and force control of robot manipulators—the operational space formulation. IEEE J Robot Autom 3(1):43–53

    Article  Google Scholar 

  • Kimura T, Haggard P, Gomi H (2006) Transcranial magnetic stimulation over sensorimotor cortex disrupts anticipatory reflex gain modulation for skilled action. J Neurosci 26(36):9272–9281

    Article  CAS  PubMed  Google Scholar 

  • Krueger M, Eggert T, Straube A (2011) Joint angle variability in the time course of reaching movements. Clin Neurophysiol 122(4):759–766

    Article  Google Scholar 

  • Krueger M, Borbely B, Eggert T, Straube A (2012) Synergistic control of joint angle variability: influence of target shape. Hum Mov Sci 31(5):1071–1089

    Article  Google Scholar 

  • Krylow AM, Rymer WZ (1997) Role of intrinsic muscle properties in producing smooth movements. IEEE Trans Biomed Eng 44(2):165–176

    Article  CAS  PubMed  Google Scholar 

  • Kurtzer IL, Pruszynski JA, Scott SH (2008) Long-latency reflexes of the human arm reflect an internal model of limb dynamics. Curr Biol 18(6):449–453

    Article  CAS  PubMed  Google Scholar 

  • Lacquaniti F, Soechting JF (1982) Coordination of arm and wrist motion during a reaching task. J Neurosci 2(4):399–408

    CAS  PubMed  Google Scholar 

  • Lacquaniti F, Soechting JF (1984) Behavior of the stretch reflex in a multi-jointed limb. Brain Res 311(1):161–166

    Article  CAS  PubMed  Google Scholar 

  • Lacquaniti F, Soechting JF (1986a) EMG Responses to load perturbations of the upper limb—effect of dynamic coupling between shoulder and elbow motion. Exp Brain Res 61(3):482–496

    Article  CAS  PubMed  Google Scholar 

  • Lacquaniti F, Soechting JF (1986b) Responses of mono- and bi-articular muscles to load perturbations of the human arm. Exp Brain Res 65(1):135–144

    Article  CAS  PubMed  Google Scholar 

  • Lacquaniti F, Soechting JF, Terzuolo SA (1986) Path constraints on point-to-point arm movements in three-dimensional space. Neuroscience 17(2):313–324

    Article  CAS  PubMed  Google Scholar 

  • Lee DP, Corcos DM, Shemmell J, Leurgans S, Hasan Z (2008) Resolving kinematic redundancy in target-reaching movements with and without external constraint. Exp Brain Res 191(1):67–81

    Article  PubMed  Google Scholar 

  • Mah CD (2001) Spatial and temporal modulation of joint stiffness during multijoint movement. Exp Brain Res 136(4):492–506

    Article  CAS  PubMed  Google Scholar 

  • Mattos DJS, Latash ML, Park E, Kuhl J, Scholz JP (2011) Unpredictable elbow joint perturbation during reaching results in multijoint motor equivalence. J Neurophysiol 106(3):1424–1436

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Morasso P (1981) Spatial control of arm movements. Exp Brain Res 42(2):223–227

    Article  CAS  PubMed  Google Scholar 

  • Norman RW, Komi PV (1979) Electromechanical delay in skeletal muscle under normal movement conditions. Acta Physiol Scand 106(3):241–248

    Article  CAS  PubMed  Google Scholar 

  • Pozzo T, Stapley PJ, Papaxanthis C (2002) Coordination between equilibrium and hand trajectories during whole body pointing movements. Exp Brain Res 144(3):343–350

    Article  PubMed  Google Scholar 

  • Sanes JN, Evarts EV (1983) Effects of perturbations on accuracy of arm movements. J Neurosci 3(5):977–986

    CAS  PubMed  Google Scholar 

  • Schütz C, Schack T (2013) Motor primitives of pointing movements in a three-dimensional workspace. Exp Brain Res 227(3):355–365

    Article  PubMed  Google Scholar 

  • Smeets JBJ, Erkelens CJ, Denier van der Gon JJ (1995) Perturbations of fast goal-directed arm movements: different behaviour of early and late EMG-responses. J Mot Behav 27:77–88

    Article  Google Scholar 

  • Soechting JF (1988) Effect of load perturbations on EMG activity and trajectories of pointing movements. Brain Res 451(1–2):390–396

    Article  CAS  PubMed  Google Scholar 

  • Soechting JF, Lacquaniti F (1988) Quantitative evaluation of the electromyographic responses to multidirectional load perturbations of the human arm. J Neurophysiol 59(4):1296–1313

    CAS  PubMed  Google Scholar 

  • Soechting JF, Lacquaniti F (1989) An assessment of the existence of muscle synergies during load perturbations and intentional movements of the human arm. Exp Brain Res 74(3):535–548

    Article  CAS  PubMed  Google Scholar 

  • Thomas JS, Corcos DM, Hasan Z (2005) Kinematic and kinetic constraints on arm, trunk, and leg segments in target-reaching movements. J Neurophysiol 93(1):352–364

    Article  PubMed  Google Scholar 

  • Tolambiya A, Thomas E, Chiovetto E, Berret B, Pozzo T (2011) An ensemble analysis of electromyographic activity during whole body pointing with the use of support vector machines. PLoS One 6(7):e20732

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wei KL, Wert D, Kording K (2010) The nervous system uses nonspecific motor learning in response to random perturbations of varying nature. J Neurophysiol 104(6):3053–3063

    Article  PubMed Central  PubMed  Google Scholar 

  • Winter DA (2009) Biomechanics and motor control of human movement. Wiley, Hoboken NJ

    Book  Google Scholar 

  • Won J, Hogan N (1995) Stability properties of human reaching movements. Exp Brain Res 107(1):125–136

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We gratefully thank Katie Ogston for proofreading the manuscript. This work was supported by the Research Training Group 1091 “Orientation and Motion in Space” of the Germany Research Foundation (DFG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, L., Straube, A. & Eggert, T. Torque response to external perturbation during unconstrained goal-directed arm movements. Exp Brain Res 232, 1173–1184 (2014). https://doi.org/10.1007/s00221-014-3826-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-014-3826-z

Keywords

Navigation