Skip to main content
Log in

The role of the right dorsolateral prefrontal cortex in the Tower of London task performance: repetitive transcranial magnetic stimulation study in patients with Parkinson’s disease

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

We studied whether one session of high-frequency repetitive transcranial magnetic stimulation (rTMS) applied over either the right or left dorsolateral prefrontal cortex would induce any measurable changes in the Tower of London spatial planning task performance in patients with Parkinson’s disease (PD). Ten patients with PD (with no dementia and/or depression) entered the randomized, sham-stimulation-controlled study with a crossover design. Active and placebo rTMS were applied over either the left or the right dorsolateral prefrontal cortex (in four separate sessions) in each patient. The order of sessions was randomized. The Tower of London task was performed prior to and immediately after each appropriate session. The “total problem-solving time” was our outcome measure. Only active rTMS of the right dorsolateral prefrontal cortex induced significant enhancement of the total problem-solving time, p = 0.038. Stimulation of the left prefrontal cortex or sham stimulations induced no significant effects. Only rTMS applied over the right dorsolateral prefrontal cortex induced positive changes in the spatial planning task performance in PD, which further supports the results of functional imaging studies indicating the causal engagement of the right-sided hemispheric structures in solving the task in this patient population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aarsland D, Brønnick K, Fladby T (2011) Mild cognitive impairment in Parkinson’s disease. Curr Neurol Neurosci Rep 11:371–378

    Article  PubMed  Google Scholar 

  • Alexander GE, Crutcher MD (1990) Functional architecture of basal ganglia circuits: neural substrates of parallel processing. Trends Neurosci 13:266–271

    Article  PubMed  CAS  Google Scholar 

  • Alexander GE, DeLong MR, Strick PL (1986) Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci 9:357–381

    Article  PubMed  CAS  Google Scholar 

  • Baker SC, Rogers RD, Owen AM et al (1996) Neural systems engaged by planning: a PET study of the Tower of London task. Neuropsychologia 34:515–526

    Article  PubMed  CAS  Google Scholar 

  • Balaz M, Srovnalova H, Rektorova I, Rektor I (2010) The effect of cortical repetitive transcranial magnetic stimulation on cognitive event-related potentials recorded in the subthalamic nucleus. Exp Brain Res 203:317–327

    Article  PubMed  CAS  Google Scholar 

  • Barrett J, Della-Maggiore V, Chouinard PA, Paus T (2004) Mechanisms of action underlying the effect of repetitive transcranial magnetic stimulation on mood: behavioral and brain imaging studies. Neuropharmacology 29:1172–1189

    Google Scholar 

  • Beauchamp MH, Dagher A, Aston JA et al (2003) Dynamic functional changes associated with cognitive skill learning of an adapted version of the Tower of London task. Neuroimage 20:1649–1660

    Article  PubMed  CAS  Google Scholar 

  • Boggio PS, Fregni F, Bermpohl F et al (2005) Effect of repetitive TMS and fluoxetine on cognitive function in patients with Parkinson’s disease and concurrent depression. Mov Disord 20:1178–1184

    Article  PubMed  Google Scholar 

  • Burgess PW, Shallice T (1996) Response suppression, initiation and strategy use following frontal lobe lesions. Neuropsychologia 34:263–272

    Article  PubMed  CAS  Google Scholar 

  • Calzavara R, Mailly P, Haber SN (2007) Relationship between the corticostriatal terminals from areas 9 and 46, and those from area 8A, dorsal and rostral premotor cortex and area 24c: an anatomical substrate for cognition to action. Eur J Neurosci 26:2005–2024

    Article  PubMed  Google Scholar 

  • Cheesman AL, Barker RA, Lewis SJ, Robbins TW, Owen AM, Brooks DJ (2005) Lateralisation of striatal function: evidence from 18F- dopa PET in Parkinson’s disease. J Neurol Neurosurg Psychiatr 76:1204–1210

    Article  PubMed  CAS  Google Scholar 

  • Collie A, Maruff P, Darby DG, McStephen M (2003) The effects of practice on the cognitive test performance of neurologically normal individuals assessed at brief test-retest intervals. J Int Neuropsychol Soc 9:419–428

    Article  PubMed  Google Scholar 

  • Cools R, Stefanova E, Barker RA, Robbins TW, Owen AM (2002) Dopaminergic modulation of high-level cognition in Parkinson’s disease: the role of the prefrontal cortex revealed by PET. Brain 125:584–594

    Article  PubMed  Google Scholar 

  • Culbertson WC, Moberg PJ, Duda JE, Stern MB, Weintraub D (2004) Assessing the executive function deficits of patients with Parkinson’s disease: utility of the Tower of London-Drexel. Assessment 11:27–39

    Article  PubMed  Google Scholar 

  • Dagher A, Owen AM, Boecker H, Brooks DJ (1999) Mapping the network for planning: a correlational PET activation study with the Tower of London task. Brain 122(Pt 10):1973–1987

    Article  PubMed  Google Scholar 

  • Dagher A, Owen AM, Boecker H, Brooks DJ (2001) The role of the striatum and hippocampus in planning: a PET activation study in Parkinson’s disease. Brain 124:1020–1032

    Article  PubMed  CAS  Google Scholar 

  • Dubois B, Pillon B (1997) Cognitive deficits in Parkinson’s disease. J Neurol 244:2–8

    Article  PubMed  CAS  Google Scholar 

  • Dubois B, Burn D, Goetz C, Aarsland D, Brown RG et al (2007) Diagnostic procedures for Parkinson’s disease dementia: recommendations from the movement disorder society task force. Mov Disord 22:2314–2324

    Article  PubMed  Google Scholar 

  • Emre M, Aarsland D, Brown R, Burn DJ, Duyckaerts C, Mizuno Y et al (2007) Clinical diagnostic criteria for dementia associated with Parkinson’s disease. Mov Disord 22:1689–1707

    Article  PubMed  Google Scholar 

  • Fahn S, Elston RL, members of the UPDRS Development Committee (1987) Unified Parkinson’s disease rating scale. In: Fahn S, Marsden CD, Goldstein M, Calne DB (eds) Recent developments in Parkinson’s disease, vol 2. Macmillan, New York, pp 153–163

    Google Scholar 

  • Goethals I, Audenaert K, Jacobs F, Van de Wiele C, Pyck H, Ham H, Vandierendonck A, van Heeringen C, Dierckx R (2004) Application of a neuropsychological activation probe with SPECT: the ‘Tower of London’ task in healthy volunteers. Nucl Med Commun 25(2):177–182

    Article  PubMed  Google Scholar 

  • Gotham AM, Brown RG, Marsden CD (1988) ‘Frontal’ cognitive function in patients with Parkinson’s disease ‘on’ and ‘off’ levodopa. Brain 111:299–321

    Article  PubMed  Google Scholar 

  • Guse B, Falkai P, Wobrock T (2010) Cognitive effects of high-frequency repetitive transcranial magnetic stimulation: a systematic review. J Neural Transm 117:105–122

    Article  PubMed  Google Scholar 

  • Haber SN, Kim KS, Mailly P, Calzavara R (2006) Reward-related cortical inputs define a large striatal region in primates that interface with associative cortical connections, providing a substrate for incentive-based learning. J Neurosci 26:8368–8376

    Article  PubMed  CAS  Google Scholar 

  • Jahanshahi M (2005) Other cognitive functions. In: Hallett M, Chokroverty S (eds) Magnetic stimulation in clinical neurophysiology. Elsevier, Philadelphia, pp 281–302

    Chapter  Google Scholar 

  • Johnson AM, Pollard CC, Vernon A, Tomes JL, Jog MS (2005) Memory perception and strategy use in Parkinson’s disease. Parkinsonism Relat Disord 11:111–115

    Article  PubMed  Google Scholar 

  • Kaasinen V, Nurmi E, Bruck A et al (2001) Increased frontal [(18)F]fluorodopa uptake in early Parkinson’s disease: sex differences in the prefrontal cortex. Brain 124:1125–1130

    Article  PubMed  CAS  Google Scholar 

  • Koch G, Oliveri M, Brusa L, Stanzione P, Torriero S, Caltagirone C (2004) High-frequency rTMS improves time perception in Parkinson disease. Neurology 63:2405–2406

    Article  PubMed  CAS  Google Scholar 

  • Kudlicka A, Clare L, Hindle JV (2011) Executive functions in Parkinson’s disease: systematic review and meta-analysis. Mov Disord 26:2305–2315

    Article  PubMed  Google Scholar 

  • Kulisevsky J, Avila A, Barbanoj M, Antonijoan R, Berthier ML, Gironell A (1996) Acute effects of levodopa on neuropsychological performance in stable and fluctuating Parkinson’s disease patients at different levodopa plasma levels. Brain 119:2121–2132

    Article  PubMed  Google Scholar 

  • Lange KW, Robbins TW, Marsden CD, James M, Owen AM, Paul GM (1992) L-dopa withdrawal in Parkinson’s disease selectively impairs cognitive performance in tests sensitive to frontal lobe dysfunction. Psychopharmacol Berl 107:394–404

    Article  CAS  Google Scholar 

  • Lazeron RH, Rombouts SA, Machielsen WC, Scheltens P, Witter MP, Uylings HB, Barkhof F (2000) Visualizing brain activation during planning: the tower of London test adapted for functional MR imaging. AJNR Am J Neuroradiol 21:1407–1414

    PubMed  CAS  Google Scholar 

  • Leh SE, Petrides M, Strafella A (2010) The neural circuitry of executive function in healthy subjects and Parkinson’s disease. Neuropsychopharmacology 35:70–85

    Article  PubMed  Google Scholar 

  • Litvan I, Aarsland D, Adler CH, Goldman JG, Kulisevsky J, Mollenhauer B, Rodriguez-Oroz MC, Tröster AI, Weintraub D (2011) MDS Task Force on mild cognitive impairment in Parkinson’s disease: critical review of PD-MCI. Mov Disord 26:1814–1824

    Article  PubMed  Google Scholar 

  • Manes F, Sahakian B, Clark L, Rogers R, Antoun N et al (2002) Decision-making processes following damage to the prefrontal cortex. Brain 125:624–639

    Article  PubMed  Google Scholar 

  • Mattay VS, Tessitore A, Callicolt JH et al (2002) Dopaminergic modulation of cortical function in patients with Parkinson's disease. Ann Neurol 51:156–164

    Article  PubMed  CAS  Google Scholar 

  • McKinlay A, Kaller CP, Grace RC, Dalrymple-Alford JC, Anderson TJ et al (2008) Planning in Parkinson’s disease: a matter of problem structure? Neuropsychologia 46:384–389

    Article  PubMed  CAS  Google Scholar 

  • McKinlay A, Grace RC, Kaller CP, Dalrymple-Alford JC, Anderson TJ et al (2009) Assessing cognitive impairment in Parkinson’s disease: a comparison of two tower tasks. Appl Neuropsychol 16:177–185

    Article  PubMed  Google Scholar 

  • Milner BA, Regan D, Heron JR (1971) Theoretical models of the generation of steady-state evoked potentials, their relation to neuroanatomy and their relevance to certain clinical problems. Vis Res 11:1203–1204

    Article  PubMed  CAS  Google Scholar 

  • Morris RG, Downes JJ, Sahakian BJ, Evenden JL, Heald A, Robbins TW (1988) Planning and spatial working memory in Parkinson’s disease. J Neurol Neurosurg Psychiatr 51:757–766

    Article  PubMed  CAS  Google Scholar 

  • Morris RG, Ahmed S, Syed GM, Toone BK (1993) Neural correlates of planning ability: frontal lobe activation during Tower of London test. Neuropsychologia 31:1367–1378

    Article  PubMed  CAS  Google Scholar 

  • Newman SD, Carpenter PA, Varma S, Just MA (2003) Frontal and parietal participation in problem solving in the Tower of London: fMRI and computational modeling of planning and high-level perception. Neuropsychologia 41:1668–1682

    Article  PubMed  Google Scholar 

  • Owen AM (1997) Cognitive planning in humans: neuropsychological, neuroanatomical and neuropharmacological perspectives. Prog Neurobiol 53:431–450

    Article  PubMed  CAS  Google Scholar 

  • Owen AM, Doyon J, Petrides M, Evans AC (1996) Planning and spatial working memory: a positron emission tomography study in humans. Eur J Neurosci 8:353–364

    Article  PubMed  CAS  Google Scholar 

  • Owen AM, Doyon J, Dagher A, Sadikot A, Evans AC (1998) Abnormal basal ganglia outflow in Parkinson's disease identified with PET. Implications for higher cortical functions. Brain 121:949–965

    Article  PubMed  Google Scholar 

  • Pal E, Nagy F, Aschermann Z, Balazs E, Kovacs N (2010) The impact of left prefrontal repetitive transcranial magnetic stimulation on depression in Parkinson’s disease: a randomized, double-blind, placebo-controlled study. Mov Disord 25:2311–2317

    Article  PubMed  Google Scholar 

  • Parent A (1990) Extrinsic connections of the basal ganglia. Trends Neurosci 13:254–258

    Article  PubMed  CAS  Google Scholar 

  • Parent A, Hazrati LN (1995) Functional anatomy of the basal ganglia. I. The cortico-basal ganglia-thalamo-cortical loop. Brain Res Brain Res Rev 20(1):91–127

    Article  PubMed  CAS  Google Scholar 

  • Petrides M, Pandya DN (1999) Dorsolateral prefrontal cortex: comparative cytoarchitectonic analysis in the human and the macaque brain and corticocortical connection patterns. Eur J Neurosci 11:1011–1036

    Article  PubMed  CAS  Google Scholar 

  • Petrides M, Alivisatos B, Meyer E, Evans AC (1993) Functional activation of the human frontal cortex during the performance of verbal working memory task. Proc Natl Acad Sci USA 90:878–882

    Article  PubMed  CAS  Google Scholar 

  • Possin KL, Brambati SM, Rosen HJ, Johnson JK, Pa J, Weiner MW, Miller BL, Kramer JH (2009) Rule violation errors are associated with right lateral prefrontal cortex atrophy in neurodegenerative disease. J Int Neuropsychol Soc 15:354–364

    Article  PubMed  Google Scholar 

  • Rakshi JS, Uema T, lto K et al (1999) Frontal, midbrain and striatal dopaminergic function in early and advanced Parkinson’s disease: a 3D [(18)F]dopa PET study. Brain 122:1637–1650

    Article  PubMed  Google Scholar 

  • Rektorova I, Megova S, Bares M, Rektor I (2005) Cognitive functioning after repetitive transcranial magnetic stimulation in patients with cerebrovascular disease without dementia: a pilot study of seven patients. J Neurol Sci 229–230:157–161

    Article  PubMed  Google Scholar 

  • Rektorova I, Sedlackova S, Megova S, Hlubocky A, Rektor I (2007) Repetitive transcranial magnetic stimulation for freezing of gait (FOG) in Parkinson’s disease. Mov Disord 22:1518–1519

    Article  PubMed  Google Scholar 

  • Rektorova I, Srovnalova H, Kubikova R, Prasek J (2008) Striatal dopamine transporter imaging correlates with depressive symptoms and tower of London task performance in Parkinson’s disease. Mov Disord 23:1580–1587

    Article  PubMed  Google Scholar 

  • Rossini PM, Barker AT, Berardelli A, Caramia MD, Carus G, Gracco RQ (1994) Noninvasive electrical and magnetic stimulation of the brain, spinal cord and roots: basic principles and procedures for routine clinical application. Report of an IFCN Committee. Electroencephalogr Clin Neurophysiol 91:79–92

    Article  PubMed  CAS  Google Scholar 

  • Sedlácková S, Rektorová I, Srovnalová H, Rektor I (2009) Effect of high frequency repetitive transcranial magnetic stimulation on reaction time, clinical features and cognitive functions in patients with Parkinson’s disease. J Neural Transm 116:1093–1101

    Article  PubMed  Google Scholar 

  • Shallice T (1982) Specific impairments of planning. Philos Trans R Soc Lond B Biol Sci 298:199–209

    Article  PubMed  CAS  Google Scholar 

  • Shallice T, Burgess PW (1991) Deficits in strategy application following frontal lobe damage in man. Brain 114:727–741

    Article  PubMed  Google Scholar 

  • Siebner HR, Rothwell J (2003) Transcranial magnetic stimulation: new insights into representational cortical plasticity. Exp Brain Res 148:1–16

    Article  PubMed  Google Scholar 

  • Srovnalova H, Marecek R, Rektorova I (2011) The role of the inferior frontal gyri in cognitive processing of patients with Parkinson’s disease: a pilot rTMS study. Mov Disord 26:1545–1548

    Article  PubMed  Google Scholar 

  • Strafella AP, Paus T, Barrett J, Dagher A (2001) Repetitive transcranial magnetic stimulation of the human prefrontal cortex induced dopamine release in the caudate nucleus. J Neurosci 21:1–4

    Google Scholar 

  • Van den Heuvel OA, Groenewegen HJ, Barkhof F et al (2003) Frontostriatal system in planning complexity: a parametric functional magnetic resonance version of Tower of London task. Neuroimage 18:367–374

    Article  PubMed  Google Scholar 

  • Ward CD, Gibb WR (1990) Research diagnostic criteria for Parkinson’s disease. Adv Neurol 53:245–249

    PubMed  CAS  Google Scholar 

  • Weaver FM, Follett KA, Reda DJ, Hur K (2007) Conducting clinical trials of deep brain stimulation in Parkinson’s disease. In: Baltuch GH, Stern MB (eds) Deep brain stimulation for Parkinson’s disease. Informa Helathcare, New York, pp 229–316

    Google Scholar 

  • World Health Organization (1993) The ICD-10 classification of mental and behavioural disorders: diagnostic criteria for research. WHO, Geneva

    Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Mojmir Tyrlik and Ing. Zdenek Novotny for their assistance with data analyses. The study was supported by the project “CEITEC—Central European Institute of Technology” (CZ.1.05/1.1.00/02.0068) from the European Regional Development Fund and by grant IGA NT 12094-5/2011 from the Czech Ministry of Health.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Rektorova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Srovnalova, H., Marecek, R., Kubikova, R. et al. The role of the right dorsolateral prefrontal cortex in the Tower of London task performance: repetitive transcranial magnetic stimulation study in patients with Parkinson’s disease. Exp Brain Res 223, 251–257 (2012). https://doi.org/10.1007/s00221-012-3255-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-012-3255-9

Keywords

Navigation