Skip to main content
Log in

Global Navier–Stokes Flows for Non-decaying Initial Data with Slowly Decaying Oscillation

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Consider the Cauchy problem of incompressible Navier–Stokes equations in \(\mathbb {R}^3\) with uniformly locally square integrable initial data. If the square integral of the initial datum on a ball vanishes as the ball goes to infinity, the existence of a time-global weak solution has been known. However, such data do not include constants, and the only known global solutions for non-decaying data are either for perturbations of constants, or when the velocity gradients are in \(L^p\) with finite p. In this paper, we construct global weak solutions for non-decaying initial data whose local oscillations decay, no matter how slowly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barraza, O.: Self-similar solutions in weak \(L^p\)-spaces of the Navier–Stokes equations. Rev. Mat. Iberoam. 12, 411–439 (1996)

    MathSciNet  MATH  Google Scholar 

  2. Bahouri, H., Chemin, J.-Y., Danchin, R.: Fourier analysis and nonlinear partial differential equations. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 343. Springer, Heidelberg (2011)

  3. Caffarelli, L., Kohn, R., Nirenberg, L.: Partial regularity of suitable weak solutions of the Navier–Stokes equations. Commun. Pure Appl. Math. 35(6), 771–831 (1982)

    ADS  MathSciNet  MATH  Google Scholar 

  4. Calderón, C.P.: Existence of weak solutions for the Navier–Stokes equations with initial data in \(L^p\). Trans. Am. Math. Soc. 318, 179–200 (1990)

    MATH  Google Scholar 

  5. Cannone, M., Planchon, F.: Self-similar solutions for Navier–Stokes equations in \({\mathbb{R}}^3\). Commun. Partial Differ. Equ. 21(1–2), 179–193 (1996)

    MATH  Google Scholar 

  6. Fabes, E.B., Jones, B.F., Rivière, N.M.: The initial value problem for the Navier–Stokes equations with data in \(L^{p}\). Arch. Ration. Mech. Anal. 45, 222–240 (1972)

    MATH  Google Scholar 

  7. Gallagher, I.: The tridimensional Navier–Stokes equations with almost bidimensional data: stability, uniqueness, and life span. Int. Math. Res. Notices 18, 919–935 (1997)

    MathSciNet  MATH  Google Scholar 

  8. Giga, Y.: Solutions for semilinear parabolic equations in \(L^p\) and regularity of weak solutions of the Navier–Stokes system. J. Differ. Equ. 62(2), 186–212 (1986)

    ADS  MATH  Google Scholar 

  9. Giga, Y., Inui, K., Matsui, S.: On the Cauchy problem for the Navier–Stokes equations with nondecaying initial data. Advances in fluid dynamics, 27-68, Quad. Mat., 4, Dept. Math., Seconda Univ. Napoli, Caserta (1999)

  10. Giga, Y., Miyakawa, T.: Navier–Stokes flows in \({\mathbb{R}}^3\) with measures as initial vorticity and the Morrey spaces. Commun. Partial Differ. Equ. 14, 577–618 (1989)

    MATH  Google Scholar 

  11. Hopf, E.: Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen. Math. Nachr. 4, 213–231 (1951)

    MathSciNet  MATH  Google Scholar 

  12. Jia, H., Šverák, V.: Minimal \(L^3\)-initial data for potential Navier–Stokes singularities. SIAM J. Math. Anal. 45(3), 1448–1459 (2013)

    MathSciNet  MATH  Google Scholar 

  13. Jia, H., Šverák, V.: Local-in-space estimates near initial time for weak solutions of the Navier–Stokes equations and forward self-similar solutions. Invent. Math. 196(1), 233–265 (2014)

    ADS  MathSciNet  MATH  Google Scholar 

  14. Kang, K., Miura, H., Tsai, T.-P.: Short time regularity of Navier–Stokes flows with locally \(L^3\) initial data and applications, Int. Math. Res. Not., to appear, arXiv:1812.10509

  15. Kato, T.: Strong \(L^{p}\)-solutions of the Navier–Stokes equation in \({ R}^{m}\), with applications to weak solutions. Math. Z. 187(4), 471–480 (1984)

    MathSciNet  MATH  Google Scholar 

  16. Kato, T.: Strong solutions of the Navier–Stokes equation in Morrey spaces. Bol. Soc. Brasil. Mat. (N.S.) 22(2), 127–155 (1992)

    MathSciNet  MATH  Google Scholar 

  17. Kikuchi, N., Seregin, G.: Weak solutions to the Cauchy problem for the Navier–Stokes equations satisfying the local energy inequality. Nonlinear equations and spectral theory, Am. Math. Soc. Transl. Ser. 2, 220, Am. Math. Soc., pp. 141–164. Providence, RI (2007)

  18. Koch, H., Tataru, D.: Well-posedness for the Navier–Stokes equations. Adv. Math. 157(1), 22–35 (2001)

    MathSciNet  MATH  Google Scholar 

  19. Kozono, H., Yamazaki, M.: Semilinear heat equations and the Navier–Stokes equation with distributions in new function spaces as initial data. Commun. Partial Differ. Equ. 19, 959–1014 (1994)

    MathSciNet  MATH  Google Scholar 

  20. Lemarié-Rieusset, P. G.: Recent developments in the Navier–Stokes problem. Chapman Hall/CRC Research Notes in Mathematics, 431. Chapman Hall/CRC, Boca Raton, FL (2002)

  21. Lemarié-Rieusset, P.G.: The Navier–Stokes equations in the critical Morrey–Campanato space. Rev. Mat. Iberoam. 23(3), 897–930 (2007)

    MathSciNet  MATH  Google Scholar 

  22. Lemarié-Rieusset, P.G.: The Navier–Stokes Problem in the 21st Century. CRC Press, Boca Raton (2016)

    MATH  Google Scholar 

  23. Leray, J.: Sur le mouvement d’un liquide visqueux emplissant l’espace. Acta Math. 63(1), 193–248 (1934). (French)

    MathSciNet  MATH  Google Scholar 

  24. Luo, Y., Tsai, T.-P.: Regularity criteria in weak \(L^3\) for 3D incompressible Navier–Stokes equations. Funkcialaj Ekvacioj 58, 387–404 (2015)

    MathSciNet  MATH  Google Scholar 

  25. Maekawa, Y., Miura, H., Prange, C.: Local energy weak solutions for the Navier–Stokes equations in the half-space. Commun. Math. Phys. 367(2), 517–580 (2019)

    ADS  MathSciNet  MATH  Google Scholar 

  26. Maekawa, Y., Terasawa, Y.: The Navier–Stokes equations with initial data in uniformly local \(L^p\) spaces. Differ. Integral Equ. 19(4), 369–400 (2006)

    MATH  Google Scholar 

  27. Majda, A. J., Bertozzi, A. L.: Vorticity and incompressible flow, volume 27 of Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge (2002)

  28. Maremonti, P., Shimizu, S.: Global existence of solutions to 2-D Navier–Stokes flow with non-decaying initial data in half-plane, J. Differential Equations 265 (2018) 5352–5383. Errata: ibid 266 (2019), no. 7, 3925-3926

Download references

Acknowledgements

The research of both Kwon and Tsai was partially supported by NSERC Grant 261356-13.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyunju Kwon.

Additional information

Communicated by H. T. Yau

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kwon, H., Tsai, TP. Global Navier–Stokes Flows for Non-decaying Initial Data with Slowly Decaying Oscillation. Commun. Math. Phys. 375, 1665–1715 (2020). https://doi.org/10.1007/s00220-020-03695-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-020-03695-3

Navigation