Skip to main content
Log in

Asymptotics in Spin-Boson Type Models

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

In this paper, we investigate a family of models for a qubit interacting with a bosonic field. More precisely, we find asymptotic limits of the Hamiltonian as the interaction strength tends to infinity. The main result has two applications. First of all, we show that any self-energy renormalisation scheme similar to that of the Nelson model does not converge for the three-dimensional Spin-Boson model. Secondly, we show that excited states exist in the massive Spin-Boson model for sufficiently large interaction strengths. We are also able to compute the asymptotic limit of many physical quantities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bach, V., Ballesteros, M., Könenberg, M., Menrath, L.: Existence of ground state eigenvalues for the spin-boson model with critical infrared divergence and multiscale analysis. J. Math. Anal. Appl. 453, 773–797 (2017)

    Google Scholar 

  2. Bach, V., Fröhlich, J., Sigal, I.M.: Quantum electrodynamics of confined nonrelativistic particles. Adv. Math. 137, 299–395 (1998)

    Google Scholar 

  3. Betz, V., Hiroshima, F., Lorinczi, J.: Feynman-Kac-Type Theorems and Gibbs Measures on Path Space, with Applications to Rigorous Quantum Field Theory. De Gruyter Studies in Mathematics, vol. 34. Walter De Gruyter & CO, Berlin (2011)

    Google Scholar 

  4. Bratteli, O., Robinson, D.W.: Operator Algebras and Quantum Statistical Mechanics. 2. Texts and Monographs in Physics, vol. 2. Springer, Berlin (1997)

    Google Scholar 

  5. Dam, T. N., Møller J. S.: Spin boson type models analysed through symmetries. arXiv:1803.05812 (Accepted in Kyoto Journal of Mathematics)

  6. Derezinski, J., Gérard, C.: Asymptotic completeness in quantum field theory: Massive Pauli-Fierz Hamiltonians. Rev. Math. Phys. 11, 383–450 (1999)

    Google Scholar 

  7. Derezinski, J.: Van Hove Hamiltonians–exactly solvable models of the infrared and ultraviolet problem. Ann. Henri Poncaré 4, 713–738 (2003)

    Google Scholar 

  8. Deckert, D.A., Pizzo, A.: Ultraviolet properties of the spinless, one-particle Yukawa model. Commun. Math. Phys. 327, 887–920 (2014)

    Google Scholar 

  9. Fröhlich, J.: On the infrared problem in a model of scalar electrons and massless scalar bosons. Ann. Inst. Henri Poincaré 19, 1–103 (1973)

    Google Scholar 

  10. Fröhlich, J.: Existence of dressed one-electron states in a class of persistent models. Fortschr. Phys. 22, 159–198 (1974)

    Google Scholar 

  11. Gérard, C.: On the existence of ground states for massless Pauli-Fierz Hamiltonians. Ann. Henri Poincaré 1, 443–459 (2000)

    Google Scholar 

  12. Glimm, J., Jaffe, A.: The \(\lambda (\phi ^4)_2\) quantum field theory without cutoffs: II. The field operators and the approximate vacuum. Ann. Math. 91, 362–401 (1970)

    Google Scholar 

  13. Griesemer, M., Hasler, D.: On the smooth Feshbach–Schur map. J. Funct. Anal. 254, 2329–2335 (2008)

    Google Scholar 

  14. Griesemer, M., Lieb, E., Loss, M.: Ground states in non-relativistic quantum electrodynamics. Invent. Math. 145, 557–595 (2001)

    Google Scholar 

  15. Griesemer, M., Wünsch, A.: On the domain of the Nelson hamiltonian. J. Math. Phys. 54, 04211 (2018)

    Google Scholar 

  16. Hasler, D., Herbst, I.: Ground states in the spin boson model. Annales Henri Poincaré 12, 621–677 (2011)

    Google Scholar 

  17. Hirokawa, M., Hiroshima, F., Lorinczi, J.: Spin-boson model through a Poisson-driven stochastic process. Math. Z. 277, 1165–1198 (2014)

    Google Scholar 

  18. Hirokawa, M., Møller, J.S., Sasaki, I.: A mathematical analysis of dressed photon in ground state of generalized quantum rabi model using pair theory. J. Phys. A Math. Theor. 50(18), 184003 (2017)

    Google Scholar 

  19. Merkli, M., Könenberg, M., Song, H.: Ergodicity of the spin-boson model for arbitrary coupling strength. Commun. Math. Phys. 336, 261–285 (2014)

    Google Scholar 

  20. Miyao, T.: Nondegeneracy of ground states in nonrelativistic quantum field theory. J. Oper. Theory 64, 207–241 (2010)

    Google Scholar 

  21. Møller, J.S.: Fully coupled Pauli–Fierz systems at zero and positive temperature. J. Math. Phys. 55, 075203 (2014)

    Google Scholar 

  22. Parthasarathy, K.R.: An Introduction to Quantum Stochastic Calculus, Monographs in Mathematics, vol. 85. Birkhäuser, Basel (1992)

    Google Scholar 

  23. Reed, M., Simon, B.: Methods of Modern Mathematical Physics, vol. I. Functional Analysis Revised and enlarged edition. Elsevier, Amsterdam (1980)

    Google Scholar 

  24. Roeck, W.D., Griesemer, M., Kupiainen, A.: Asymptotic completeness for the massless spin-boson model. Adv. Math. 268, 62–84 (2015)

    Google Scholar 

  25. Schmüdgen, K.: Unbounded Self-Adjoint Operators on Hilbert Space. Springer, New York (2012)

    Google Scholar 

  26. Spohn, H.: The polaron at large total momentum. J. Phys. A 21, 1199–1211 (1988)

    Google Scholar 

  27. Spohn, H.: Ground state(s) of the spin-boson hamiltonian. Commun. Math. Phys. 123, 277–304 (1989)

    Google Scholar 

  28. Spohn, H., Dümcke, R.: Quantum tunneling with dissipation and the Ising model over \({\mathbb{R}}\). J. Stat. Phys. 41, 389–423 (1985)

    Google Scholar 

  29. Yoshihara, F., Fuse, T., Ashhab, S., Kakuyanagi, K., Saito, S., Semba, K.: Superconducting qubit-oscillator circuit beyond the ultrastrong-coupling regime. Nat. Phys. 13, 44–47 (2017)

    Google Scholar 

  30. Weidmann, J.: Linear Operators in Hilbert Spaces. Springer, New York (1980)

    Google Scholar 

Download references

Acknowledgements

Thomas Norman Dam was supported by the Independent Research Fund Denmark with through the project “Mathematics of Dressed Particles”. The authors further thank an anonymous referee for many valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacob Schach Møller.

Ethics declarations

Funding

The funding was provided by Natur og Univers, Det Frie Forskningsråd (Grant No. 1323-00360).

Additional information

Communicated by M. Salmhofer.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Various Transformation Statements

Various Transformation Statements

In this appendix various useful transformation theorems is stated. Sources are [4,5,6, 15] and [22].

Lemma A.1

Let U be a unitary operator from \(\mathcal {H}\) into some Hilbert space \(\mathcal {K}\). Then there is a unique unitary map \(\varGamma (U):\mathcal {F}_b(\mathcal {H})\rightarrow \mathcal {F}_b(\mathcal {K})\) such that \(\varGamma (U)\epsilon (g)=\epsilon (Ug)\). If \(\omega \) is selfadjoint on \(\mathcal {H}\), V is unitary and \(f\in \mathcal {H}\) then

$$\begin{aligned} \varGamma (U)d\varGamma (\omega )\varGamma (U)^*&=d\varGamma (U\omega U^*).\\ \varGamma (U)W(f,V)\varGamma (U)^*&=W(Uf,UVU^*).\\ \varGamma (U)\varphi (f)\varGamma (U)^*&=\varphi (Uf). \end{aligned}$$

Furthermore, \(\varGamma (U)(f_1\otimes _s\cdots \otimes _s f_n)=Uf_1\otimes _s\cdots \otimes _s Uf_n\) and \(U\varOmega =\varOmega \).

Lemma A.2

Let \(f,h\in \mathcal {H}\) and \(U\in \mathcal {U}(\mathcal {H})\). Then

$$\begin{aligned} W(h,U)\varphi (g)W(h,U)^*&=\varphi (Ug)-2Re (\langle Ug,h \rangle )\\ W(h,U)a(g)W(h,U)^*&=a(Ug)-\langle Ug,h \rangle \\ W(h,U)a^\dagger (g)W(h,U)^*&=a^\dagger (Ug)-\langle h,Ug \rangle . \end{aligned}$$

Furthermore, if \(\omega \) is a selfadjoint, non-negative and injective operator on \(\mathcal {H}\) and \(h\in \mathcal {D}( \omega U^* )\) then

$$\begin{aligned} W(h,U)d\varGamma (\omega )W(h,U)^*=d\varGamma (U\omega U^*)-\varphi (U\omega U^*h)+\langle h,U\omega U^*h\rangle \end{aligned}$$

on the domain \(\mathcal {D}(d\varGamma (U\omega U^*))\).

In what follows we consider two fixed Hilbert spaces \(\mathcal {H}_1\) and \(\mathcal {H}_2\). We will need the following two lemmas.

Lemma A.3

There is a unique isomorphism \(U:\mathcal {F}_b(\mathcal {H}_1\oplus \mathcal {H}_2)\rightarrow \mathcal {F}_b(\mathcal {H}_1)\otimes \mathcal {F}_b(\mathcal {H}_2)\) such that \(U(\epsilon (f\oplus g))=\epsilon (f)\otimes \epsilon (g)\). If \(\omega _i\) is selfadjoint on \(\mathcal {H}_i\), \(V_i\) is unitary on \(\mathcal {H}_i\) and \(f_i\in \mathcal {H}_i\) then

$$\begin{aligned} UW(f_1\oplus f_2,V_1\oplus V_2)U^*&=W(f_1,V_1)\otimes W(f_2,V_2)\\ Ud\varGamma (\omega _1\oplus \omega _2)U^*&=d\varGamma (\omega _1)\otimes 1 +1\otimes d\varGamma ( \omega _2)\\ U\varphi (f_1,f_2)U^*&=\varphi (f_1)\otimes 1+1\otimes \varphi (f_2)\\ Ua(f_1,f_2)U^*&=a(f_1)\otimes 1+1\otimes a(f_2)\\ Ua^{\dagger }(f_1,f_2)U^*&=a^{\dagger }(f_1)\otimes 1+1\otimes a^{\dagger }(f_2). \end{aligned}$$

Lemma A.4

There is a unique isomorphism

$$\begin{aligned} U:\mathcal {F}(\mathcal {H}_1)\otimes \mathcal {F}(\mathcal {H}_2)\rightarrow \mathcal {F}(\mathcal {H}_1)\oplus \bigoplus _{n=1}^{\infty } \mathcal {F}(\mathcal {H}_1)\otimes S_{n}(\mathcal {H}_2^{\otimes n}) \end{aligned}$$

such that

$$\begin{aligned} U(w \otimes \{\psi _2^{(n)} \}_{n=0}^\infty )=\psi ^{(0)}w\oplus \bigoplus _{n=1}^{\infty } w \otimes \psi _2^{(n)}. \end{aligned}$$

Let A be a selfadjoint operator on \(\mathcal {F}(\mathcal {H}_1)\) and B be selfadjoint on \(\mathcal {F}(\mathcal {H}_2)\) such that B is reduced by all of the subspaces \(S_{n}(\mathcal {H}_2^{\otimes n})\). Write \(B^{(n)}=B\mid _{S_{n}(\mathcal {H}_2^{\otimes n})}\). Then

$$\begin{aligned} U(A\otimes 1+1\otimes B)U^*&=A+B^{(0)}\oplus \bigoplus _{n=1}^\infty ( A\otimes 1+1\otimes B^{(n)} )\\ U A\otimes B U^*&=A \otimes B= B^{(0)} A \oplus \bigoplus _{n=1}^\infty A\otimes B^{(n)}. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dam, T.N., Møller, J.S. Asymptotics in Spin-Boson Type Models. Commun. Math. Phys. 374, 1389–1415 (2020). https://doi.org/10.1007/s00220-020-03685-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-020-03685-5

Navigation