Skip to main content
Log in

Lie–Schwinger Block-Diagonalization and Gapped Quantum Chains

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We study quantum chains whose Hamiltonians are perturbations by bounded interactions of short range of a Hamiltonian that does not couple the degrees of freedom located at different sites of the chain and has a strictly positive energy gap above its ground-state energy. We prove that, for small values of a coupling constant, the spectral gap of the perturbed Hamiltonian above its ground-state energy is bounded from below by a positive constant uniformly in the length of the chain. In our proof we use a novel method based on local Lie-Schwinger conjugations of the Hamiltonians associated with connected subsets of the chain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. The initial step, \((0,N)\rightarrow (1,1)\), is of this type; see the definitions in (3.10) corresponding to a Hamiltonian \(K_N\) with nearest-neighbor interactions.

  2. Recall that \(V_{I_{0,i}}^{(0,N)}:=H_i\) and \(V_{I_{0,i}}^{(k,q)}\) will coincide with \(V_{I_{0,i}}^{(0,N)}\) for all (kq).

  3. Recall the special steps of type (k, 1) with preceding step \((k-1, N-k+1)\).

References

  1. Bachmann, S., Nachtergaele, B.: On gapped phases with a continuous symmetry and boundary operators. J. Stat. Phys. 154(1–2), 91–112 (2014)

    Article  MathSciNet  Google Scholar 

  2. Bravyi, S., Hastings, M., Michalakis, S.: Topological quantum order: stability under local perturbations. J. Math. Phys. 51, 093512 (2010)

    Article  MathSciNet  Google Scholar 

  3. Datta, N., Fernandez, R., Fröhlich, J.: Low-temperature phase diagrams of quantum lattice systems. I. Stability for quantum perturbations of classical systems with finitely many ground states. J. Stat. Phys. 84, 455–534 (1996)

    Article  MathSciNet  Google Scholar 

  4. Datta, N., Fernandez, R., Fröhlich, J., Rey-Bellet, L.: Low-temperature phase diagrams of quantum lattice systems. II. Convergent perturbation expansions and stability in systems with infinite degeneracy helvetica. Phys. Acta 69, 752–820 (1996)

    MathSciNet  MATH  Google Scholar 

  5. Del Vecchio, S., Fröhlich, J., Pizzo, A., Rossi, S.: Lie–Schwinger block-diagonalization and gapped quantum chains with unbounded interactions. arXiv:1908.07450

  6. De Roeck, W., Schütz, M.: An exponentially local spectral flow for possibly non-self-adjoint perturbations of non-interacting quantum spins, inspired by KAM theory. Lett. Math. Phys. 107, 505–532 (2017)

    Article  MathSciNet  Google Scholar 

  7. De Roeck, W., Salmhofer, M.: Persistence of exponential decay and spectral gaps for interacting fermions. Commun. Math. Phys. https://doi.org/10.1007/s00220-018-3211-z

  8. Fernandez, R., Fröhlich, J., Ueltschi, D.: Mott transitions in lattice boson models. Commun. Math. Phys. 266, 777–795 (2006)

    Article  MathSciNet  Google Scholar 

  9. Greiter, M., Schnells, V., Thomale, R.: The 1D Ising model and topological order in the Kitaev chain. Ann. Phys. 351, 1026–1033 (2014)

    Article  Google Scholar 

  10. Hastings, M.B.: The stability of free fermi hamiltonians. J. Math. Phys. 60, 042201 (2019)

    Article  MathSciNet  Google Scholar 

  11. Imbrie, J.Z.: Multi-scale Jacobi method for anderson localization. Commun. Math. Phys. 341, 491–521 (2016)

    Article  MathSciNet  Google Scholar 

  12. Imbrie, J.Z.: On many-body localization for quantum spin chains. J. Stat. Phys. 163, 998–1048 (2016)

    Article  MathSciNet  Google Scholar 

  13. Katsura, H., Schuricht, D., Takahashi, M.: Exact ground states and topological order in interacting Kitaev/Majorana chains. Phys. Rev. B 92, 115137 (2015)

    Article  Google Scholar 

  14. Kennedy, T., Tasaki, H.: Hidden symmetry breaking and the Haldane phase in S = 1 quantum spin chains. Commun. Math. Phys. 147, 431–484 (1992)

    Article  MathSciNet  Google Scholar 

  15. Kotecky, R., Ueltschi, D.: Effective interactions due to quantum fluctuations. Commun. Math. Phys. 206, 289–3355 (1999)

    Article  MathSciNet  Google Scholar 

  16. Michalakis, S., Zwolak, J.P.: Stability of frustration-free hamiltonians. Commun. Math. Phys. 322, 277–302 (2013)

    Article  MathSciNet  Google Scholar 

  17. Moon, A., Nachtergaele, B.: Stability of gapped ground state phases of spins and fermions in one dimension. J. Math. Phys. 59, 091415 (2018)

    Article  MathSciNet  Google Scholar 

  18. Nachtergaele, B., Sims, R., Young, A.: Lieb–Robinson bounds, the spectral flow, and stability of the spectral gap for lattice fermion systems. Math. Probl. Quantum Phys. pp. 93–115

  19. Yarotsky, D.A.: Ground states in relatively bounded quantum perturbations of classical systems. Commun. Math. Phys. 261, 799–819 (2006)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

A.P. thanks the Pauli Center, Zürich, for hospitality in Spring 2017 when this project got started. A.P. also acknowledges the MIUR Excellence Department Project awarded to the Department of Mathematics, University of Rome Tor Vergata, CUP E83C18000100006.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Pizzo.

Additional information

Communicated by M. Salmhofer

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Lemma A.1

For any \(1\le n \le N\)

$$\begin{aligned} \sum _{i=1}^{n} P^{\perp }_{\Omega _i} \ge \mathbb {1}-\bigotimes _{i=1}^{n} P_{\Omega _i}=:\,\Big (\bigotimes _{i=1}^{n} P_{\Omega _i}\Big )^{\perp } \end{aligned}$$
(A.1)

where \(P^{\perp }_{\Omega _i}=\mathbb {1}-P_{\Omega _i}\).

Proof

We call \(P_{vac}:=\bigotimes _{i=1}^{n} P_{\Omega _i}\) acting on \(\mathcal {H}^{(n)}:=\bigotimes _{i=1}^{n} \mathcal {H}_i \). We define

$$\begin{aligned} A_n:=\sum _{j=1}^{n}P_{\Omega _j}^{\perp }+P_{vac}\,. \end{aligned}$$
(A.2)

Notice that all operators \(P_{\Omega _j}^{\perp }\) and \(P_{vac}\) commute with each other and are orthogonal projectors. Therefore we deduce that

$$\begin{aligned} \text {spec}(A_n)\subseteq \{0,1,2,\dots , n+1\}\,. \end{aligned}$$
(A.3)

We will show that

$$\begin{aligned} \text {Range}\,A_n=\mathcal {H}^{(n)}\,. \end{aligned}$$
(A.4)

If (A.4) holds then \(0\notin \text {spec}(A_n)\). By (A.3) it then follows that

$$\begin{aligned} A_n\ge \mathbb {1}\,. \end{aligned}$$
(A.5)

Thus, we are left with proving (A.4).

  1. (i)

    Assume that \(\psi \) is perpendicular to the range of \(A_{n}\), and let \(P_{\Omega _j}^{\perp }\psi =:\phi _j\). Then, since \(\psi \perp \text {Range}\, A_n\), we have that

    $$\begin{aligned} 0=\langle \psi , A_n \psi \rangle =\sum _{i=1\,;\,i\ne j}^{n}\langle \psi \,,\, P_{\Omega _i}^{\perp }\psi \rangle +\langle \psi \,\, P_{vac}\psi \rangle +\langle \psi \,,\, P_{\Omega _j}^{\perp }\psi \rangle \ge \langle \psi \,,\, P_{\Omega _j}^{\perp }\psi \rangle \nonumber \\ \end{aligned}$$
    (A.6)

    but

    $$\begin{aligned} \langle \psi \,,\, P_{\Omega _j}^{\perp }\psi \rangle =\langle P_{\Omega _j}^{\perp }\psi \,,\, P_{\Omega _j}^{\perp }\psi \rangle =\langle \phi _j\,,\,\phi _j\rangle \end{aligned}$$
    (A.7)

    where we have used that \(P_{\Omega _j}^{\perp }\) is an orthogonal projector. We conclude that \(\phi _j=0\) for all j.

  2. (ii)

    Let \(\psi \perp \text {Range}\,A_n\). Then, by (i),

    $$\begin{aligned} \psi =\Big (\bigotimes _{j=1}^{n}\,(P_{\Omega _j}^{\perp }+P_{\Omega _j})\Big )\,\psi = (\bigotimes _{j=1}^{n}P_{\Omega _j})\,\psi =P_{vac}\psi \end{aligned}$$
    (A.8)

    and

    $$\begin{aligned} 0=\langle \psi \,,\, A_n\,\psi \rangle =\langle \psi \,,\, P_{vac}\,\psi \rangle =\langle \psi \,,\,\psi \rangle \quad \Rightarrow \quad \psi =0\,. \end{aligned}$$
    (A.9)

Thus, \(\text {Range}\, A_n=\mathcal {H}^{(n)}\), and (A.4) is proven . \(\quad \square \)

From Lemma A.1 we derive the following bound.

Corollary A.2

For \(i+r\le N\), we define

$$\begin{aligned} P^{(+)}_{I_{r,i}}:=\Big (\bigotimes _{k=i}^{i+r}P_{\Omega _{k}}\Big )^{\perp }\,. \end{aligned}$$
(A.10)

Then, for \(1\le l \le L \le N-r\),

$$\begin{aligned} \sum _{i=l}^{L}P^{(+)}_{I_{r,i}}\le (r+1) \sum _{i=l}^{L+r} P^{\perp }_{\Omega _i} \,. \end{aligned}$$
(A.11)

Proof

Lemma A.1 says that

$$\begin{aligned} \sum _{j=i}^{i+r} P^{\perp }_{\Omega _{j}}\ge \Big (\bigotimes _{k=i}^{i+r}P_{\Omega _{k}}\Big )^{\perp }\,. \end{aligned}$$
(A.12)

By summing over i, from \(i=l\) up to L, the l-h-s of (A.12), for each j we get no more than \(r+1\) terms of the type \(P^{\perp }_{\Omega _{j}}\) and the inequality in (A.11) follows . \(\quad \square \)

Lemma A.3

Assume that \(t>0\) is sufficiently small, \(\Vert V^{(k,q-1)}_{I_{r,i}}\Vert \le \frac{8}{(r+1)^2}\,t^{\frac{r-1}{3}}\), and \(\Delta _{I_{k,q}}\ge \frac{1}{2}\). Then, for arbitrary N, \(k\ge 1\), and \(q\ge 2\), the inequalities

$$\begin{aligned} \Vert V^{(k,q)}_{I_{k,q}}\Vert \le 2\Vert V^{(k,q-1)}_{I_{k,q}}\Vert \, \end{aligned}$$
(A.13)
$$\begin{aligned} \Vert S_{I_{k, q}}\Vert \le C\cdot t \cdot \Vert V^{(k,q-1)}_{I_{k,q}}\Vert \end{aligned}$$
(A.14)

hold true for a universal constant C. For \(q=1\), \( V^{(k,q-1)}_{I_{k,q}}\) is replaced by \(V^{(k-1,N-k+1)}_{I_{k,1}}\) on the right side of (A.13) and (A.14).

Proof

In the following we assume \(q\ge 2\); if \(q=1\) an analogous proof holds. We recall that

$$\begin{aligned} V^{(k,q)}_{I_{k,q}}:= \sum _{j=1}^{\infty }t^{j-1}(V^{(k,q-1)}_{I_{k,q}})^{diag}_j \, \end{aligned}$$
(A.15)

and

$$\begin{aligned} S_{I_{k,q}}:=\sum _{j=1}^{\infty }t^j(S_{I_{k,q}})_j\ \end{aligned}$$
(A.16)

with

$$\begin{aligned} (V^{(k,q-1)}_{I_{k,q}})_1:=V^{(k,q-1)}_{I_{k,q}} \end{aligned}$$

and, for \(j\ge 2\),

$$\begin{aligned}&(V^{(k,q-1)}_{I_{k,q}})_j\, \end{aligned}$$
(A.17)
$$\begin{aligned}&\quad :=\sum _{p\ge 2, r_1\ge 1 \dots , r_p\ge 1\,; \, r_1+\dots +r_p=j}\nonumber \\&\qquad \frac{1}{p!}\text{ ad }\,(S_{I_{k,q}})_{r_1}\Big (\text{ ad }\,(S_{I_{k,q}})_{r_2}\dots (\text{ ad }\,(S_{I_{k,q}})_{r_p}(G_{I_{k,q}}))\dots \Big )\end{aligned}$$
(A.18)
$$\begin{aligned}&\qquad +\,\sum _{p\ge 1, r_1\ge 1 \dots , r_p\ge 1\,; \, r_1+\dots +r_p=j-1}\nonumber \\&\qquad \frac{1}{p!}\text{ ad }\,(S_{I_{k,q}})_{r_1}\Big (\text{ ad }\,(S_{I_{k,q}})_{r_2}\dots (\text{ ad }\,(S_{I_{k,q}})_{r_p}(V^{(k,q-1)}_{I_{k,q}}))\dots \Big )\,. \end{aligned}$$
(A.19)

and, for \(j\ge 1\),

$$\begin{aligned} (S_{I_{k,q}})_j:=ad^{-1}\,G_{I_{k,q}}\,((V^{(k,q-1)}_{I_{k,q}})^{od}_j)= \frac{1}{G_{I_{k,q}}-E_{I_{k,q}}}P^{(+)}_{I_{k,q}}\,(V^{(k,q-1)}_{I_{k,q}})_j\,P^{(-)}_{I_{k,q}}-h.c.\,.\nonumber \\ \end{aligned}$$
(A.20)

From the lines above we derive

$$\begin{aligned} \text {ad}\,(S_{I_{k,q}})_{r_p}(G_{I_{k,q}})= & {} \text {ad}\,(S_{I_{k,q}})_{r_p}(G_{I_{k,q}}-E_{I_{k,q}})\nonumber \\= & {} \,[\frac{1}{G_{I_{k,q}}-E_{I_{k,q}}}P^{(+)}_{I_{k,q}}\,(V^{(k, q-1)}_{I_{k,q}})_{r_p}\,P^{(-)}_{I_{k,q}}\,,\,G_{I_{k,q}}-E_{I_{k,q}}]+h.c. \nonumber \\\end{aligned}$$
(A.21)
$$\begin{aligned}= & {} -P^{(+)}_{I_{k,q}}\,(V^{(k,q-1)}_{I_{k,q}})_{r_p}\,P^{(-)}_{I_{k,q}}-P^{(-)}_{I_{k,q}}\,(V^{(k, q-1)}_{I_{k,q}})_{r_p}\,P^{(+)}_{I_{k,q}}\,. \end{aligned}$$
(A.22)

We recall definition (A.20) and we observe that

$$\begin{aligned} \Vert (S_{I_{k,q}})_j\Vert \le 2\frac{\Vert (V^{(k,q-1)}_{I_{k,q}})_j\Vert }{\Delta _{I_{k,q}}}\le 4\Vert (V^{(k,q-1)}_{I_{k,q}})_j\Vert \,\,, \end{aligned}$$
(A.23)

where we use the inductive hypothesis \(\Delta _{I_{k;q}}\ge \frac{1}{2}\). (Recall that \(\Delta _{I_{k;q}}\) is the gap of \(G_{I_{k,q}}\) above its groundstate energy \(E_{I_{k,q}}\).) Then formula (A.17) yields

$$\begin{aligned}&\Vert (V^{(k,q-1)}_{I_{k,q}})_j\Vert \nonumber \\&\quad \le \sum _{p=2}^{j}\,\frac{8^p}{p!}\sum _{ r_1\ge 1 \dots , r_p\ge 1\, ; \, r_1+\dots +r_p=j}\,\Vert \,(V^{(k,q-1)}_{I_{k,q}})_{r_1}\Vert \Vert \,(V^{(k,q-1)}_{I_{k,q}})_{r_2}\Vert \dots \Vert \,(V^{(k,q-1)}_{I_{k,q}})_{r_p}\Vert \nonumber \\&\qquad +\,2\Vert V^{(k,q-1)}_{I_{k,q}}\Vert \sum _{p=1}^{j-1}\,\frac{8^p}{p!}\,\sum _{ r_1\ge 1 \dots , r_p\ge 1\, ; \, r_1+\dots +r_p=j-1}\,\Vert \,(V^{(k,q-1)}_{I_{k,q}})_{r_1}\Vert \nonumber \\&\qquad \Vert \,(V^{(k,q-1)}_{I_{k,q}})_{r_2}\Vert \dots \Vert \,(V^{(k,q-1)}_{I_{k,q}})_{r_p}\Vert \,. \end{aligned}$$
(A.24)

From now on, we closely follow the proof of Theorem 3.2 in [DFFR]; that is, assuming \(\Vert V^{(k,q-1)}_{I_{k,q}}\Vert \ne 0\), we recursively define numbers \(B_j\), \(j\ge 1\), by the equations

$$\begin{aligned} B_1:= & {} \Vert V^{(k,q-1)}_{I_{k,q}}\Vert =\Vert (V^{(k,q-1)}_{I_{k,q}})_1\Vert \,, \end{aligned}$$
(A.25)
$$\begin{aligned} B_j:= & {} \frac{1}{a}\sum _{k=1}^{j-1}B_{j-k}B_k\,,\quad j\ge 2\,, \end{aligned}$$
(A.26)

with  \(a>0\)  satisfying the relation

$$\begin{aligned} \frac{e^{8a}-8a-1}{a}+e^{8a}-1=1\,. \end{aligned}$$
(A.27)

Using (A.25), (A.26), (A.24), and an induction, it is not difficult to prove that (see Theorem 3.2 in [DFFR]) for \(j\ge 2\)

$$\begin{aligned} \Vert (V^{(k,q-1)}_{I_{k,q}})_j\Vert \le B_j\,\Big (\frac{e^{8a}-8a-1}{a}\Big )+2\Vert V^{(k,q-1)}_{I_{k;q}}\Vert \,B_{j-1}\Big (\frac{e^{8a}-1}{a}\Big )\,. \end{aligned}$$
(A.28)

From (A.25) and (A.26) it also follows that

$$\begin{aligned} B_j\ge \frac{2B_{j-1}\Vert \,V^{(k,q-1)}_{I_{k,q}}\,\Vert }{a}\,\quad \Rightarrow \quad B_{j-1}\le a\frac{B_j}{2\Vert \,V^{(k,q-1)}_{I_{k,q}}\,\Vert }\,, \end{aligned}$$
(A.29)

which, when combined with (A.28) and (A.27), yield

$$\begin{aligned} B_j\ge \Vert \,(V^{(k,q-1)}_{I_{k,q}})_j\Vert \,. \end{aligned}$$
(A.30)

The numbers \(B_j\) are the Taylor’s coefficients of the function

$$\begin{aligned} f(x):=\frac{a}{2}\cdot \left( \,1-\sqrt{1- (\frac{4}{a}\cdot \Vert V^{(k,q-1)}_{I_{k,q}}\Vert ) \,x }\,\right) \,, \end{aligned}$$
(A.31)

(see [DFFR]). Therefore the radius of analyticity, \(t_0\), of

$$\begin{aligned} \sum _{j=1}^{\infty }t^{j-1}\Vert (V^{(k,q-1)}_{I_{k,q}})^{diag}_j \Vert =\frac{d}{dt}\,\Big (\sum _{j=1}^{\infty }\frac{t^{j}}{j}\Vert (V^{(k,q-1)}_{I_{k,q}})^{diag}_j \Vert \Big ) \end{aligned}$$
(A.32)

is bounded below by the radius of analyticity of \(\sum _{j=1}^{\infty }x^jB_j\), i.e.,

$$\begin{aligned} t_0\ge \frac{a}{4\Vert V^{(k,q-1)}_{I_{k,q}}\Vert }\ge \frac{a}{8} \end{aligned}$$
(A.33)

where we have used the assumption that \(\Vert V^{(k,q-1)}_{I_{r;i}}\Vert \le \frac{8}{(r+1)^2}\,t^{\frac{r-1}{3}}\) and \((0<)t<1\). Thanks to the inequality in (A.23) the same bound holds true for the radius of convergence of the series \(S_{I_{k;q}}:=\sum _{j=1}^{\infty }t^j(S_{I_{k;q}})_j\,\) . For \(0<t<1\) and in the interval \((0,\frac{a}{16})\), by using (A.25) and (A.30) we can estimate

$$\begin{aligned} \sum _{j=1}^{\infty }t^{j-1}\Vert (V^{(k,q-1)}_{I_{k,q}})^{diag}_j \Vert\le & {} \frac{1}{t}\sum _{j=1}^{\infty }t^jB_j \end{aligned}$$
(A.34)
$$\begin{aligned}= & {} \frac{1}{t}\cdot \frac{a}{2}\cdot \left( \,1-\sqrt{1- (\frac{4}{a}\cdot \Vert V^{(k,q-1)}_{I_{k,q}}\Vert ) \,t }\,\right) \end{aligned}$$
(A.35)
$$\begin{aligned}\le & {} (1+C_a \cdot t )\,\Vert V^{(k,q-1)}_{I_{k,q}}\Vert \end{aligned}$$
(A.36)

for some a-dependent constant \(C_a>0\). Hence the inequality in (A.13) holds true, provided that \(t>0\) is sufficiently small but independent of N, k, and q. In a similar way we derive (A.14). \(\quad \square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fröhlich, J., Pizzo, A. Lie–Schwinger Block-Diagonalization and Gapped Quantum Chains. Commun. Math. Phys. 375, 2039–2069 (2020). https://doi.org/10.1007/s00220-019-03613-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-019-03613-2

Navigation