Skip to main content
Log in

Embeddings of Uniform Roe Algebras

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

In this paper, we study embeddings of uniform Roe algebras. Generally speaking, given metric spaces X and Y, we are interested in which large scale geometric properties are stable under embedding of the uniform Roe algebra of X into the uniform Roe algebra of Y.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. Recall, a coarse map \(f:(X,d)\rightarrow (Y,\partial )\) is a map so that for all \(s>0\) there exists \(r>0\) such that \(d(x,y)<s\) implies \(\partial (f(x),f(y))<r\). See Sect. 2.

  2. This property for metric spaces is often called bounded geometry in the literature.

  3. In [24, Lemma 5.2] X is assumed to have the metric sparsification property, but this is equivalent to property A for u.l.f. metric spaces (see [6, Propositioshn 4.1], [5, Proposition 3.2 and Theorem 3.8] and [19, Theorem 4.1]).

  4. More precisely, in [4, Lemma 3.4] one has \(\mathrm {C}^*_u(Y)\) instead of \(\mathcal {B}(\ell _2(Y))\). However, this is not used in the proof.

  5. An ideal \(\mathscr {I}\subseteq \mathcal P(X)\) is ccc/Fin if every family of almost disjoint sets which are not in \(\mathscr {I}\) is countable.

  6. We refer the reader to [4] for a detailed study of uniform Roe coronas.

  7. Precisely, the proof of [4, Proposition 4.1] starts by taking a an infinite \(L\subseteq \mathbb {N}\) and working with the subsequence \((p_n)_{n\in L}\). Since \(\mathscr {I}\) is ccc/Fin, going to a further subsequence we can suppose that \(L\in \mathscr {I}\). The proof now holds verbatim.

  8. Notice that it is not known whether FDC and property A are equivalent.

References

  1. Arzhantseva, G., Guentner, E., Špakula, J.: Coarse non-amenability and coarse embeddings. Geom. Funct. Anal. 22(1), 22–36 (2012)

    MathSciNet  MATH  Google Scholar 

  2. Bell, G., Dranishnikov, A.: Asymptotic dimension. Topol. Appl. 155(12), 1265–1296 (2008)

    MathSciNet  MATH  Google Scholar 

  3. Braga, B.M., Farah, I.: On the rigidity of uniform Roe algebras over uniformly locally finite coarse spaces. arXiv:1805.04236 (2018)

  4. Braga, B.M., Farah, I., Vignati, A.: Uniform Roe coronas. arXiv:1810.07789 (2018)

  5. Brodzki, J., Niblo, G.A., Špakula, J., Willett, R., Wright, N.: Uniform local amenability. J. Noncommut. Geom. 7(2), 583–603 (2013)

    MathSciNet  MATH  Google Scholar 

  6. Chen, X., Tessera, R., Wang, X., Yu, G.: Metric sparsification and operator norm localization. Adv. Math. 218(5), 1496–1511 (2008)

    MathSciNet  MATH  Google Scholar 

  7. Ewert, E., Meyer, R.: Coarse geometry and topological phases. Commun. Math. Phys. 366(3), 1069–1098 (2019)

    ADS  MathSciNet  MATH  Google Scholar 

  8. Farah, I.: Analytic quotients: theory of liftings for quotients over analytic ideals on the integers. Mem. Am. Math. Soc. 148(702), xvi+177 (2000)

    MathSciNet  MATH  Google Scholar 

  9. Finn-Sell, M.: Fibred coarse embeddings, a-T-menability and the coarse analogue of the Novikov conjecture. J. Funct. Anal. 267(10), 3758–3782 (2014)

    MathSciNet  MATH  Google Scholar 

  10. Guentner, E., Tessera, R., Yu, G.: A notion of geometric complexity and its application to topological rigidity. Invent. Math. 189(2), 315–357 (2012)

    ADS  MathSciNet  MATH  Google Scholar 

  11. Guentner, E., Tessera, R., Yu, G.: Discrete groups with finite decomposition complexity. Groups Geom. Dyn. 7(2), 377–402 (2013)

    MathSciNet  MATH  Google Scholar 

  12. Kubota, Y.: Controlled topological phases and bulk-edge correspondence. Commun. Math. Phys. 349(2), 493–525 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  13. Murphy, G.: \(C^*\)-Algebras and Operator Theory. Academic Press Inc., Boston, MA (1990)

    MATH  Google Scholar 

  14. Nowak, P., Yu, G.: Large scale geometry. EMS Textbooks in Mathematics. European Mathematical Society (EMS), Zürich (2012)

    MATH  Google Scholar 

  15. Roe, J.: An index theorem on open manifolds. I, II. J. Differential Geom. 27(1), 87–113, 115–136, (1988)

  16. Roe, J.: Coarse cohomology and index theory on complete Riemannian manifolds. Mem. Am. Math. Soc. 104(497), x+90 (1993)

    MathSciNet  MATH  Google Scholar 

  17. Roe, J.: Lectures on Coarse Geometry. University Lecture Series, vol. 31. American Mathematical Society, Providence (2003)

    MATH  Google Scholar 

  18. Roe, J., Willett, R.: Ghostbusting and property A. J. Funct. Anal. 266(3), 1674–1684 (2014)

    MathSciNet  MATH  Google Scholar 

  19. Sako, H.: Property A and the operator norm localization property for discrete metric spaces. J. Reine Angew. Math. 690, 207–216 (2014)

    MathSciNet  MATH  Google Scholar 

  20. Skandalis, G., Tu, J.L., Yu, G.: The coarse Baum–Connes conjecture and groupoids. Topology 41(4), 807–834 (2002)

    MathSciNet  MATH  Google Scholar 

  21. Špakula, J., Tikuisis, A.: Relative commutant pictures of Roe algebras. Commun. Math. Phys. 365(3), 1019–1048 (2019)

    ADS  MathSciNet  MATH  Google Scholar 

  22. Špakula, J., Willett, R.: On rigidity of Roe algebras. Adv. Math. 249, 289–310 (2013)

    MathSciNet  MATH  Google Scholar 

  23. Špakula, J., Willett, R.: A metric approach to limit operators. Trans. Am. Math. Soc. 369(1), 263–308 (2017)

    MathSciNet  MATH  Google Scholar 

  24. Špakula, J., Zhang, J.: Quasi-locality and property A. arXiv:1809.00532 (2018)

  25. White, S., Willett, R.: Cartan subalgebras of uniform Roe algebras. arXiv:1808.04410 (2018)

  26. Willett, R.: Some notes on property A. In: Arzhantseva, G., Valette, A. (eds.) Limits of Graphs in Group Theory and Computer Science, pp. 191–281. EPFL Press, Lausanne (2009)

    Google Scholar 

  27. Yu, G.: The coarse Baum–Connes conjecture for spaces which admit a uniform embedding into Hilbert space. Invent. Math. 139(1), 201–240 (2000)

    ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno M. Braga.

Additional information

Communicated by Y. Kawahigashi

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Braga, B.M., Farah, I. & Vignati, A. Embeddings of Uniform Roe Algebras. Commun. Math. Phys. 377, 1853–1882 (2020). https://doi.org/10.1007/s00220-019-03539-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-019-03539-9

Navigation