Skip to main content
Log in

A Geometric Perspective on the Method of Descent

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We derive a first order representation formula for the tensorial wave equation \({\Box_\mathbf{g} \phi^I=F^I}\) in globally hyperbolic Lorentzian spacetimes \({(\mathcal{M}^{2+1}, \mathbf{g})}\) by giving a geometric formulation of the method of descent which is applicable for any dimension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Choquet-Bruhat Y.: Théorème d’existence pour certains systèmes d’équations aux dérivées partielles nonlinéaires. Acta Math. 88, 141–225 (1952)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Choquet-Bruhat, Y.: (2009) General relativity and the Einstein equations, Oxford Mathematical Monographs. Oxford University Press, Oxford

  3. Choquet-Bruhat Y., Moncrief V.: Future global in time Einsteinian spacetimes with U(1) isometry group. Ann. Henri Poincar 2(6), 10071064 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  4. Christodoulou, D., Klainerman, S.: (1993) The Global Nonlinear Stability of Minkowski Space, Princeton Mathematical Series 41

  5. Chrusciel P., Shatah J.: Global existence of solutions of the Yang-Mills equations on globally hyperbolic four-dimensional Lorentzian manifolds. Asian J. Math. 1(3), 530–548 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  6. Eardley D., Moncrief V.: The global existence of Yang-Mills-Higgs fields in 4-dimensional Minkowski space II. Completion of proof. Commun. Math. Phys. 83(2), 193–212 (1982)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Evans, L.: Partial Differential Equations, 2nd eqn. Graduate Studies in Mathematics, 19. American Mathematical Society, Providence, RI, 2010. xxii+749 pp

  8. Friedlander H.G.: The Wave Equation on a Curved Space–Time. Cambridge University Press, Cambridge (1976)

    Google Scholar 

  9. Hawking S.W., Ellis G.F.R.: The large scale structure of space-time, Cambridge Monographs on Mathematical Physics, 1. Cambridge University Press, LondonNew York (1973)

    Book  Google Scholar 

  10. Klainerman S., Rodnianski I.: Causal geometry of Einstein-vacuum spacetimes with finite curvature flux. Invent. Math. 159(3), 437–529 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Klainerman S., Rodnianski I.: A Kirchhoff-Sobolev parametrix for the wave equation and applications. J. Hyperbolic Differ. Equ. 4(3), 401–433 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Klainerman S., Rodnianski I.: On the radius of injectivity of null hypersurfaces. J. Am. Math. Soc. 21(3), 775–795 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Klainerman S., Rodnianski I.: Bilinear estimates on curved space–times. J. Hyperbolic Differ. Equ. 2(2), 279–291 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. Klainerman S., Rodnianski I.: On the breakdown criterion in general relativity. J. Am. Math. Soc. 23(2), 345–382 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Moncrief, V.: An integral equation for spacetime curvature in general relativity. Surveys in differential geometry. Vol. X, 109146, Surv. Differ. Geom., 10, Int. Press, Somerville (2006)

  16. Moncrief V.: Reflections on the U(1) problem in general relativity. J. Fixed Point Theory Appl. 14(2), 397–418 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Moncrief, V.: Convergence and Stability Issues in Mathematical Cosmology. General Relativity and Gravitation, pp. 480–498. Cambridge Univ. Press, Cambridge (2015)

  18. Poisson, E., Pound, A., Vega, I.: The motion of point particles in curved spacetime. Living Rev. Relat., 14, 7 (2011). http://www.livingreviews.org/lrr-2011-7

  19. Sobolev S.: Methodes nouvelle a resoudre le probleme de Cauchy pour les equations lineaires hyperboliques normales. Matematicheskii Sbornik 1(43), 31–79 (1936)

    Google Scholar 

  20. Shao, A.: Breakdown Criteria for Einstein Equations with Matters. Ph.D. thesis, Princeton University (2010)

  21. Smith H.F.: A parametrix construction for wave equations with \({C^{1,1}}\) coefficients. Ann. Inst. Fourier (Grenoble) 48(3), 797–835 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  22. Wang, Q.: Causal Geometry of Einstein-Vacuum Spacetimes. Ph.D. thesis, Princeton University (2006)

  23. Wang, Q.: Improved breakdown criterion for Einstein vacuum equations in CMC gauge. Commun. Pure Appl. Math., \({\cdot}\) LXV, 21–76 (2012)

  24. Wang Q.: Rough solutions of Einstein vacuum equations in CMCSH gauges. Commun. Math. Phys. 328(3), 1275–1340 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Wang, Q.: An intrinsic hyperboloid approach for Einstein Klein–Gordon equations (preprint) (2016). arxiv:1607.01466

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qian Wang.

Additional information

Communicated by P. Chrusciel

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q. A Geometric Perspective on the Method of Descent. Commun. Math. Phys. 360, 827–850 (2018). https://doi.org/10.1007/s00220-018-3151-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-018-3151-7

Navigation