Skip to main content
Log in

Active Spanning Trees with Bending Energy on Planar Maps and SLE-Decorated Liouville Quantum Gravity for \({\kappa > 8}\)

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We introduce a two-parameter family of probability measures on spanning trees of a planar map. One of the parameters controls the activity of the spanning tree and the other is a measure of its bending energy. When the bending parameter is 1, we recover the active spanning tree model, which is closely related to the critical Fortuin–Kasteleyn model. A random planar map decorated by a spanning tree sampled from our model can be encoded by means of a generalized version of Sheffield’s hamburger-cheeseburger bijection. Using this encoding, we prove that for a range of parameter values (including the ones corresponding to maps decorated by an active spanning tree), the infinite-volume limit of spanning-tree-decorated planar maps sampled from our model converges in the peanosphere sense, upon rescaling, to an \({{\rm SLE}_\kappa}\)-decorated γ-Liouville quantum cone with \({\kappa > 8}\) and \({\gamma = 4/ \sqrt\kappa \in (0,\sqrt 2)}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Borot G., Bouttier J., Guitter E.: More on the O(n) model on random maps via nested loops: loops with bending energy. J. Phys. A 45(27), 275206 (2012) arXiv:1202.5521

    Article  MathSciNet  MATH  Google Scholar 

  2. Bernardi O.: A characterization of the Tutte polynomial via combinatorial embeddings. Ann. Comb. 12(2), 139–153 (2008) arXiv:math/0608057

    Article  MathSciNet  MATH  Google Scholar 

  3. Bernardi, O.: Tutte polynomial, subgraphs, orientations and sandpile model: new connections via embeddings. Electron. J. Combin. 15(1), Research Paper 109 (2008). arXiv:math/0612003

  4. Berestycki N., Laslier B.T., Ray G.: Critical exponents on Fortuin–Kasteleyn weighted planar maps. Comm. Math. Phys. 355(2), 427–462 (2017) arXiv:1502.00450

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Benjamini, I., Schramm, O.: Recurrence of distributional limits of finite planar graphs. Electron. J. Probab. 6(23) (electronic) (2001). arXiv:math/0011019

  6. Chen L.: Basic properties of the infinite critical-FK random map. Ann. Inst. Henri Poincaré D 4(3), 245–271 (2017) arXiv:1502.01013

    Article  MathSciNet  MATH  Google Scholar 

  7. Courtiel, J.: A general notion the Tutte polynomial (2014). arXiv:1412.2081

  8. Di Francesco P., Guitter E., Kristjansen C.: Integrable 2D Lorentzian gravity and random walks. Nuclear Phys. B 567(3), 515–553 (2000) arXiv:hep-th/9907084

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Duplantier, B., Miller, J., Sheffield, S.: Liouville quantum gravity as a mating of trees (2014). arXiv:1409.7055

  10. Evans S.N.: On the Hausdorff dimension of Brownian cone points. Math. Proc. Cambridge Philos. Soc. 98(2), 343–353 (1985)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Fortuin C.M., Kasteleyn P.W.: On the random-cluster model. I. Introduction and relation to other models. Physica 57, 536–564 (1972)

    Article  ADS  MathSciNet  Google Scholar 

  12. Gwynne E., Holden N., Miller J., Sun X.: Brownian motion correlation in the peanosphere for \({\kappa > 8}\). Ann. Inst. Henri Poincaré Probab. Stat. 53(4), 1866–1889 (2017) arXiv:1510.04687

    Article  MathSciNet  MATH  Google Scholar 

  13. Gwynne, E., Holden, N., Sun, X.: Joint scaling limit of a bipolar-oriented triangulation and its dual in the peanosphere sense (2016). arXiv:1603.01194

  14. Gwynne, E., Miller J.: Convergence of the topology of critical Fortuin-Kasteleyn planar maps to that of \({CLE_\kappa}\) on a Liouville quantum surface. In: preparation (2017)

  15. Gwynne, E., Mao, C., Sun X.: Scaling limits for the critical Fortuin-Kasteleyn model on a random planar map I: cone times. Annales de l’Institut Henri Poincaré (2017). arXiv:1502.00546

  16. Gwynne, E., Miller, J., Sheffield, S.: The Tutte embedding of the mated-CRT map converges to Liouville quantum gravity (2017). arXiv:1705.11161

  17. Gwynne, E., Sun, X.: Scaling limits for the critical Fortuin-Kasteleyn model on a random planar map III: finite volume case. Electron. J. Probab. 22(45), 1–56 (2017) (October 2015). arXiv:1510.06346

  18. Gwynne, E., Sun, X.: Scaling limits for the critical Fortuin-Kasteleyn model on a random planar map II: local estimates and empty reduced word exponent. Electron. J. Probab. 22:Paper No. 45, 1–56 (2017). arXiv:1505.03375

  19. Kenyon, R., Miller, J., Sheffield, S., Wilson, D.B.: Bipolar orientations on planar maps and SLE 12 (2015). arXiv:1511.04068

  20. Kemppainen, A., Smirnov, S.: Conformal invariance of boundary touching loops of FK Ising model (2015). arXiv:1509.08858

  21. Kassel A., Wilson D.B.: Active spanning trees and Schramm–Loewner evolution. Phys. Rev. E 93, 062121 (2016) arXiv:1512.09122

    Article  ADS  Google Scholar 

  22. Le Gall J.-F.: Uniqueness and universality of the Brownian map. Ann. Probab. 41(4), 2880–2960 (2013) arXiv:1105.4842

    Article  MathSciNet  MATH  Google Scholar 

  23. Le Gall, J.-F.: Random geometry on the sphere. In: Proceedings of the ICM (2014). arXiv:1403.7943

  24. Lawler, G.F., Limic, V.: Random Walk: A Modern Introduction, Volume 123 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge (2010)

  25. Lyons, R., Peres, Y.: Probability on Trees and Networks, Volume 42 of Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, New York (2016). http://pages.iu.edu/rdlyons/

  26. Lawler F.G, Schramm O., Werner W.: Conformal invariance of planar loop-erased random walks and uniform spanning trees. Ann. Probab. 32(1B), 939–995 (2004) arXiv:math/0112234

    Article  MathSciNet  MATH  Google Scholar 

  27. Li, Y., Sun, X., Watson, S.S.: Schnyder woods, SLE(16), and Liouville quantum gravity (2017). arXiv:1705.03573

  28. Miermont, G.: Random maps and their scaling limits. In: Fractal Geometry and Stochastics IV, Volume 61 of Progress in Probability, pp. 197–224. Birkhäuser Verlag, Basel (2009)

  29. Miermont G.: The Brownian map is the scaling limit of uniform random plane quadrangulations. Acta Math. 210(2), 319–401 (2013) arXiv:1104.1606

    Article  MathSciNet  MATH  Google Scholar 

  30. Miller, J.,Sheffield S.: An axiomatic characterization of the Brownian map (2015). arXiv:1506.03806

  31. Miller, J., Sheffield, S.: Liouville quantum gravity and the Brownian map I: The QLE(8/3,0) metric (2015). arXiv:1507.00719

  32. Miller, J., Sheffield, S.: Liouville quantum gravity spheres as matings of finite-diameter trees (2015). arXiv:1506.03804

  33. Miller J., Sheffield S.: Imaginary geometry III: reversibility of \({SLE_\kappa}\) for \({\kappa \in (4,8)}\). Ann. Math. 184(2), 455–486 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  34. Miller, J., Sheffield, S.: Liouville quantum gravity and the Brownian map II: geodesics and continuity of the embedding (2016). arXiv:1605.03563

  35. Miller, J., Sheffield, S.: Liouville quantum gravity and the Brownian map III: the conformal structure is determined (2016). arXiv:1608.05391

  36. Miller J., Sheffield S.: Imaginary geometry I: interacting SLEs. Probab. Theory Relat. Fields 164(3-4), 553–705 (2016) arXiv:1201.1496

    Article  MathSciNet  MATH  Google Scholar 

  37. Miller J., Sheffield S.: Imaginary geometry II: Reversibility of \({SLE_\kappa(\rho_1;\rho_2)}\) for \({\kappa \in (0,4)}\). Ann. Probab. 44(3), 1647–1722 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  38. Miller J., Sheffield S.: Quantum Loewner evolution. Duke Math. J. 165(17), 3241–3378 (2016) arXiv:1312.5745

    Article  MathSciNet  MATH  Google Scholar 

  39. Miller J., Sheffield S.: Imaginary geometry IV: interior rays, whole-plane reversibility, and space-filling trees. Probab. Theory Relat. Fields 169(3-4), 729–869 (2017) arXiv:1302.4738

    Article  MathSciNet  MATH  Google Scholar 

  40. Mullin R.C.: On the enumeration of tree-rooted maps. Can. J. Math. 19, 174–183 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  41. Rohde S., Schramm O.: Basic properties of SLE. Ann. Math. (2) 161(2), 883–924 (2005) arXiv:math/0106036

    Article  MathSciNet  MATH  Google Scholar 

  42. Schramm O.: Scaling limits of loop-erased random walks and uniform spanning trees. Isr. J. Math. 118, 221–288 (2000) arXiv:math/9904022

    Article  MathSciNet  MATH  Google Scholar 

  43. Sheffield S.: Exploration trees and conformal loop ensembles.. Duke Math J. 147(1), 79–129 (2009) arXiv:math/0609167

    Article  MathSciNet  MATH  Google Scholar 

  44. Sheffield S.: Quantum gravity and inventory accumulation. Ann. Probab. 44(6), 3804–3848 (2016) arXiv:1108.2241

    Article  MathSciNet  MATH  Google Scholar 

  45. Shimura M.: Excursions in a cone for two-dimensional Brownian motion. J. Math. Kyoto Univ. 25(3), 433–443 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  46. Whitt, W.: Stochastic-Process Limits. Springer Series in Operations Research. Springer-Verlag, New York (2002). An introduction to stochastic-process limits and their application to queues

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ewain Gwynne.

Additional information

Communicated by H. Duminil-Copin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gwynne, E., Kassel, A., Miller, J. et al. Active Spanning Trees with Bending Energy on Planar Maps and SLE-Decorated Liouville Quantum Gravity for \({\kappa > 8}\). Commun. Math. Phys. 358, 1065–1115 (2018). https://doi.org/10.1007/s00220-018-3104-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-018-3104-1

Navigation