Skip to main content
Log in

The Sum Over Topological Sectors and θ in the 2+1-Dimensional \({\mathbb{CP}^1 \sigma}\)-Model

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We discuss the three spacetime dimensional \({\mathbb{CP}^N}\) model and specialize to the \({\mathbb{CP}^1}\) model. Because of the Hopf map \({\pi_3(\mathbb{CP}^1)=\mathbb{Z}}\) one might try to couple the model to a periodic θ parameter. However, we argue that only the values θ = 0 and θ = π are consistent. For these values the Skyrmions in the model are bosons and fermions respectively, rather than being anyons. We also extend the model by coupling it to a topological quantum field theory, such that the Skyrmions are anyons. We use techniques from geometry and topology to construct the θ = π theory on arbitrary 3-manifolds, and use recent results about invertible field theories to prove that no other values of \({\theta}\) satisfy the necessary locality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Freed D.S., Moore G.W.: Setting the quantum integrand of M-theory. Commun. Math. Phys. 263(1), 89–132 (2006) arXiv:hep-th/0409135

    Article  MathSciNet  MATH  ADS  Google Scholar 

  2. Wilczek F., Zee A.: Linking numbers, spin, and statistics of solitons. Phys. Rev. Lett. 51, 2250–2252 (1983)

    Article  MathSciNet  ADS  Google Scholar 

  3. Polyakov A.M.: Fermi–Bose transmutations induced by gauge fields. Mod. Phys. Lett. A3, 325 (1988)

    Article  MathSciNet  ADS  Google Scholar 

  4. Abanov A.G., Wiegmann P.B.: Theta terms in nonlinear sigma models. Nucl. Phys. B570, 685–698 (2000) arXiv:hep-th/9911025

    Article  MathSciNet  MATH  ADS  Google Scholar 

  5. Dzyaloshinsky I., Polyakov A.M., Wiegmann P.: Neutral fermions in paramagnetic insulators. Phys. Lett. A127, 112–114 (1988)

    Article  ADS  Google Scholar 

  6. Seiberg N., Witten E.: Gapped boundary phases of topological insulators via weak coupling. PTEP 2016(12), 12C101 (2016) arXiv:1602.04251

    MathSciNet  MATH  Google Scholar 

  7. Seiberg N., Senthil T., Wang C., Witten E.: A duality web in 2+1 dimensions and condensed matter physics. Ann. Phys. 374, 395–433 (2016) arXiv:1606.01989

    Article  MathSciNet  MATH  ADS  Google Scholar 

  8. Borokhov V., Kapustin A., Wu X.: Topological disorder operators in three-dimensional conformal field theory. J. High Energy Phys. 2002(11), 049 (2003) arXiv:hep-th/0206054

    Article  MathSciNet  Google Scholar 

  9. Freed D.S.: Pions and generalized cohomology. J. Differ. Geom. 80(1), 45–77 (2008) arXiv:hep-th/0607134

    Article  MathSciNet  MATH  Google Scholar 

  10. Witten E.: Global aspects of current algebra. Nucl. Phys. B223, 422–432 (1983)

    Article  MathSciNet  ADS  Google Scholar 

  11. Witten E.: Current algebra, baryons, and quark confinement. Nucl. Phys. B223, 433–444 (1983)

    Article  MathSciNet  ADS  Google Scholar 

  12. Komargodski Z., Seiberg N. A Symmetry Breaking Scenario for QCD3 arXiv:1706.08755

  13. Aharony O., Seiberg N., Tachikawa Y.: Reading between the lines of four-dimensional gauge theories. JHEP 08, 115 (2013) arXiv:1305.0318

    Article  MathSciNet  MATH  ADS  Google Scholar 

  14. Seiberg N.: Modifying the sum over topological sectors and constraints on supergravity. JHEP 07, 070 (2010) arXiv:1005.0002

    Article  MathSciNet  MATH  ADS  Google Scholar 

  15. Maldacena J.M., Moore G.W., Seiberg N.: D-brane charges in five-brane backgrounds. JHEP 10, 005 (2001) arXiv:hep-th/0108152

    Article  MathSciNet  ADS  Google Scholar 

  16. Banks T., Seiberg N.: Symmetries and strings in field theory and gravity. Phys. Rev. D83, 084019 (2011) arXiv:1011.5120

    ADS  Google Scholar 

  17. Kapustin A., Seiberg N.: Coupling a QFT to a TQFT and duality. JHEP 04, 001 (2014) arXiv:1401.0740

    Article  ADS  Google Scholar 

  18. Dijkgraaf R., Witten E.: Topological gauge theories and group cohomology. Commun. Math. Phys. 129, 393 (1990)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  19. Witten E.: SL(2,Z) action on three-dimensional conformal field theories with Abelian symmetry arXiv:hep-th/0307041

  20. Freed D.S.: Higher algebraic structures and quantization. Commun. Math. Phys. 159(2), 343–398 (1994) arXiv:hep-th/9212115

    Article  MathSciNet  MATH  ADS  Google Scholar 

  21. Lawrence, R. J.: Triangulations, categories and extended topological field theories. In: Quantum Topology, vol. 3 of Series of Knots Everything pp.191–208. World Scientific Publication, River Edge, NJ (1993)

  22. Lurie, J.: On the classification of topological field theories. In: Current Developments in Mathematics, 2008, pp.129–280. International Press, Somerville, MA, 2009. arXiv:0905.0465

  23. Segal, G.: The definition of conformal field theory. In: Topology, eometry and Quantum Field Theory. Voloume 308 of London Mathematics Society ecture Note Series. pp. 421–577. Cambridge University Press, Cambridge 2004)

  24. Atiyah, M.: Topological quantum field theories. Inst. Hautes Études Sci. Publ. Math. (1988), no. 68, 175–186 (1989)

  25. Freed, D. S., Hopkins, M. J.: Reflection positivity and invertible opological phases. arXiv:1604.06527

  26. Hopkins M.J., Singer I.M.: Quadratic functions in geometry topology, and M-theory. J. Differ. Geom. 70, 329–452 (2005) arXiv:math/0211216

    Article  MathSciNet  MATH  Google Scholar 

  27. Belov, G. M. D.: Classification of abelian spin Chern–Simons theories. arXiv:hep-th/0505235

  28. Jenquin, J. A.: Classical Chern–Simons on manifolds with spin structure. arXiv:math/0504524

  29. Freed D.S., Moore G.W., Segal G.: The uncertainty of fluxes. Commun. Math. Phys. 271, 247–274 (2007) arXiv:hep-th/0605198

    Article  MathSciNet  MATH  ADS  Google Scholar 

  30. Klonoff, K. R.: An index theorem in differential k-theory. 2008. University of Texas Ph.D. thesis.

  31. Ortiz, M. L.: Differential equivariant K-theory. arXiv:0905.0476

  32. Atiyah M.F., Patodi V.K., Singer I.M.: Spectral asymmetry and Riemannian geometry. I. Math Proc. Cambridge Philos. Soc. 77, 43–69 (1975)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  33. Dai X., Freed D.S.: η-invariants and determinant lines. C. R. Acad. Sci. Paris Sér. I Math. 320(5), 585–591 (1995) arXiv:hep-th/9405012

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zohar Komargodski.

Additional information

Communicated by X. Yin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Freed, D.S., Komargodski, Z. & Seiberg, N. The Sum Over Topological Sectors and θ in the 2+1-Dimensional \({\mathbb{CP}^1 \sigma}\)-Model. Commun. Math. Phys. 362, 167–183 (2018). https://doi.org/10.1007/s00220-018-3093-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-018-3093-0

Navigation