Skip to main content
Log in

Quantum Algorithm for Linear Differential Equations with Exponentially Improved Dependence on Precision

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We present a quantum algorithm for systems of (possibly inhomogeneous) linear ordinary differential equations with constant coefficients. The algorithm produces a quantum state that is proportional to the solution at a desired final time. The complexity of the algorithm is polynomial in the logarithm of the inverse error, an exponential improvement over previous quantum algorithms for this problem. Our result builds upon recent advances in quantum linear systems algorithms by encoding the simulation into a sparse, well-conditioned linear system that approximates evolution according to the propagator using a Taylor series. Unlike with finite difference methods, our approach does not require additional hypotheses to ensure numerical stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Aaronson S.: Quantum computing, postselection, and probabilistic polynomial-time. Proc. R. Soc. Lond. A 461(2063), 3473–3482 (2005) arXiv:quant-ph/0412187

    Article  MATH  ADS  MathSciNet  Google Scholar 

  2. Aharonov, D., Ta-Shma, A.: Adiabatic quantum state generation and statistical zero knowledge. In: Proceedings of the 35th ACM Symposium on Theory of Computing, pp. 20–29 (2003). arXiv:quant-ph/0301023

  3. Berry D.W.: High-order quantum algorithm for solving linear differential equations. J. Phys. A 47(10), 105301 (2014) arXiv:1010.2745

    Article  MATH  ADS  MathSciNet  Google Scholar 

  4. Berry D.W., Ahokas G., Cleve R., Sanders B.C.: Efficient quantum algorithms for simulating sparse Hamiltonians. Commun. Math. Phys. 270(2), 359–371 (2007) arXiv:quant-ph/0508139

    Article  MATH  ADS  MathSciNet  Google Scholar 

  5. Berry, D.W., Childs, A.M., Cleve, R., Kothari, R., Somma, R.D.: Exponential improvement in precision for simulating sparse Hamiltonians. In: Proceedings of the 46th Annual ACM Symposium on Theory of Computing, pp. 283–292 (2014). arXiv:1312.1414

  6. Berry D.W., Childs A.M., Cleve R., Kothari R., Somma R.D.: Simulating Hamiltonian dynamics with a truncated Taylor series. Phys. Rev. Lett. 114(9), 090502 (2015) arXiv:1412.4687

    Article  ADS  Google Scholar 

  7. Berry, D.W., Childs, A.M., Kothari, R.: Hamiltonian simulation with nearly optimal dependence on all parameters. In: Proceedings of the 56th Annual Symposium on Foundations of Computer Science, pp. 792–809 (2015). arXiv:1501.01715

  8. Berry D.W., Novo L.: Corrected quantum walk for optimal Hamiltonian simulation. Quantum Inf. Comput. 16(15–16), 1295 (2016) arXiv:1606.03443

    MathSciNet  Google Scholar 

  9. Brassard G., Høyer P., Mosca M., Tapp A.: Quantum amplitude amplification and estimation. Contemp. Math. 305, 53–74 (2002) arXiv:quant-ph/0005055

    Article  MATH  MathSciNet  Google Scholar 

  10. Childs, A.M.: Quantum information processing in continuous time. Ph.D. thesis, Massachusetts Institute of Technology (2004)

  11. Childs, A.M., Kothari, R., Somma, R.D.: Quantum linear systems algorithm with exponentially improved dependence on precision (2015). arXiv:1511.02306

  12. Harrow A.W., Hassidim A., Lloyd S.: Quantum algorithm for linear systems of equations. Phys. Rev. Lett. 103(15), 150502 (2009) arXiv:0811.3171

    Article  ADS  MathSciNet  Google Scholar 

  13. Lloyd S.: Universal quantum simulators. Science 273(5278), 1073–1078 (1996)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  14. Low, G.H., Chuang, I.L.: Hamiltonian simulation by qubitization. arXiv:1610.06546

  15. Low G.H., Chuang I.L.: Optimal Hamiltonian simulation by quantum signal processing. Phys. Rev. Lett. 118(9), 010501 (2017) arXiv:1606.02685

    Article  ADS  MathSciNet  Google Scholar 

  16. Novo, L., Berry, D.W.: Improved Hamiltonian simulation via a truncated Taylor series and corrections. arXiv:1611.10033

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aaron Ostrander.

Additional information

Communicated by M. M. Wolf

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berry, D.W., Childs, A.M., Ostrander, A. et al. Quantum Algorithm for Linear Differential Equations with Exponentially Improved Dependence on Precision. Commun. Math. Phys. 356, 1057–1081 (2017). https://doi.org/10.1007/s00220-017-3002-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-017-3002-y

Navigation