Skip to main content
Log in

Gibbs Measures of Nonlinear Schrödinger Equations as Limits of Many-Body Quantum States in Dimensions \({d \leqslant 3}\)

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We prove that Gibbs measures of nonlinear Schrödinger equations arise as high-temperature limits of thermal states in many-body quantum mechanics. Our results hold for defocusing interactions in dimensions \({d =1,2,3}\). The many-body quantum thermal states that we consider are the grand canonical ensemble for d = 1 and an appropriate modification of the grand canonical ensemble for \({d =2,3}\). In dimensions d = 2, 3, the Gibbs measures are supported on singular distributions, and a renormalization of the chemical potential is necessary. On the many-body quantum side, the need for renormalization is manifested by a rapid growth of the number of particles. We relate the original many-body quantum problem to a renormalized version obtained by solving a counterterm problem. Our proof is based on ideas from field theory, using a perturbative expansion in the interaction, organized by using a diagrammatic representation, and on Borel resummation of the resulting series.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ammari Z., Falconi M., Pawilowski B.: On the rate of convergence for the mean-field approximation of many-body quantum dynamics. Commun. Math. Sci. 14, 1417–1442 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  2. Ammari Z., Nier F.: Mean-field limit for bosons and propagation of Wigner measures. J. Math. Phys. 50, 042107 (2009)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  3. Bach V.: Ionization energies of bosonic Coulomb systems. Lett. Math. Phys. 21, 139–149 (1991)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  4. Ben Arous G., Kirkpatrick K., Schlein B.: A central limit theorem in many-body quantum dynamics. Commun. Math. Phys. 321, 371–417 (2013)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  5. Benguria R., Lieb E.H.: Proof of the stability of highly negative ions in the absence of the Pauli principle. Phys. Rev. Lett. 50, 1771–1774 (1983)

    Article  ADS  Google Scholar 

  6. Bhatia R., Elsner L.: The Hoffman–Wielandt inequality in infinite dimensions. Proc. Ind. Acad. Sci. 104(3), 483–494 (1994)

    MATH  MathSciNet  Google Scholar 

  7. Boccato C., Cenatiempo S., Schlein B.: Quantum many-body fluctuations around nonlinear Schrödinger dynamics. Ann. Inst. Henri Poincaré Anal. Non Linéaire 18, 113–191 (2017)

    Article  ADS  MATH  Google Scholar 

  8. Bourgain J.: Periodic nonlinear Schrödinger equation and invariant measures. Commun. Math. Phys. 166, 1–26 (1994)

    Article  ADS  MATH  Google Scholar 

  9. Bourgain J.: On the Cauchy problem and invariant measure problem for the periodic Zakharov system. Duke Math. J. 76, 175–202 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  10. Bourgain J.: Invariant measures for the 2D-defocusing nonlinear Schrödinger equation. Commun. Math. Phys. 176, 421–445 (1996)

    Article  ADS  MATH  Google Scholar 

  11. Bourgain J.: Invariant measures for the Gross–Pitaevskii equation. J. Math. Pures Appl. 76, 649–702 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  12. Bourgain J.: Refinements of Strichartz’s inequality and applications to 2D-NLS with critical nonlinearity. Int. Math. Res. Not. 5, 253–283 (1998)

    Article  MATH  Google Scholar 

  13. Bourgain J.: Invariant measures for NLS in infinite volume. Commun. Math. Phys. 210, 605–620 (2000)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  14. Bourgain J., Bulut A.: Gibbs measure evolution in radial nonlinear wave and Schrödinger equations on the ball. C. R. Math. Acad. Sci. Paris 350, 571–575 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  15. Bourgain J., Bulut A.: Almost sure global well posedness for the radial nonlinear Schrödinger equation on the unit ball II: the 3D case. J. Eur. Math. Soc. (JEMS) 16, 1289–1325 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  16. Bourgain J., Bulut A.: Almost sure global well posedness for the radial nonlinear Schrödinger equation on the unit ball I: the 2D case. Ann. Inst. Henri Poincaré Anal. Non Linéaire 31, 1267–1288 (2014)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  17. Brydges D., Slade G.: Statistical mechanics of the 2D focusing nonlinear Schrödinger equation. Commun. Math. Phys. 182, 485–504 (1996)

    Article  ADS  MATH  Google Scholar 

  18. Buchholz S., Saffirio C., Schlein B.: Multivariate central limit theorem in quantum dynamics. J. Stat. Phys. 154, 113–152 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  19. Burq N., Thomann L., Tzvetkov N.: Long time dynamics for the one dimensional non linear Schrödinger equation. Ann. Inst. Fourier (Grenoble) 63, 2137–2198 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  20. Burq N., Tzvetkov N.: Random data Cauchy theory for supercritical wave equations. I. Local theory. Invent. Math. 173, 449–475 (2008)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  21. Burq N., Tzvetkov N.: Random data Cauchy theory for supercritical wave equations II. A global existence result. Invent. Math. 173, 477–496 (2008)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  22. Cacciafesta F., Suzzoni A.-S.: Invariant measure for the Schrödinger equation on the real line. J. Funct. Anal. 269, 271–324 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  23. Cacciafesta, F., de Suzzoni, A.-S.: On Gibbs measure and weak flow for the cubic NLS with non-localised initial data. Preprint arXiv:1507.03820

  24. Chen L., Oon Lee J., Schlein B.: Rate of convergence towards Hartree dynamics. J. Stat. Phys. 144(4), 872–903 (2011)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  25. Chen T., Pavlović N.: The quintic NLS as the mean-field limit of a boson gas with three-body interactions. J. Funct. Anal. 260, 959–997 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  26. Chen X.: Second order corrections to mean-field evolution for weakly interacting bosons in the case of three-body interactions. Arch. Ration. Mech. Anal. 203, 455–497 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  27. Chen X., Holmer J.: Focusing quantum many-body dynamics: the rigorous derivation of the 1D focusing cubic nonlinear Schrödinger equation. Arch. Ration. Mech. Anal. 221, 631–676 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  28. Chen X., Holmer J.: Focusing quantum many-body dynamics II: the rigorous derivation of the 1D focusing cubic nonlinear Schrödinger equation from 3D. Anal. PDE 10-3, 589–633 (2017)

    Article  MATH  Google Scholar 

  29. Colliander J., Oh T.: Almost sure well-posedness of the cubic nonlinear Schrödinger equation below \({\ell ^2 (T)}\). Duke Math. J. 161, 367–414 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  30. Suzzoni A.-S.: Invariant measure for the cubic wave equation on the unit ball of \({\mathbb{R}^3}\). Dyn. Partial Differ. Equ. 8, 127–147 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  31. Deng Y.: Two-dimensional nonlinear Schrödinger equation with random initial data. Anal. PDE 5, 913–960 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  32. Deng Y., Tzvetkov N., Visciglia N.: Invariant measures and long time behaviour for the Benjamin–Ono equation III. Commun. Math. Phys. 339, 815–857 (2015)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  33. Dolbeault J., Felmer P., Loss M., Paturel E.: Lieb–Thirring type inequalities and Gagliardo–Nirenberg inequalities for systems. J. Funct. Anal. 238(1), 193–220 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  34. Ehrenfest P.: Bemerkung über die angenäherte Gültigkeit der klassichen Machanik innerhalb der Quanatenmechanik. Z. Phys. 45, 455–457 (1927)

    Article  ADS  MATH  Google Scholar 

  35. Elgart A., Erdős L., Schlein B., Yau H.-T.: Gross–Pitaevskii equation as the mean field limit of weakly coupled bosons. Arch. Ration. Mech. Anal. 179, 265–283 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  36. Elgart A., Schlein B.: Mean-field dynamics for boson stars. Commun. Pure Appl. Math. 60(4), 500–545 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  37. Erdős L., Schlein B., Yau H.-T.: Derivation of the Gross–Pitaevskii hierarchy for the dynamics of Bose–Einstein condensate. Commun. Pure Appl. Math. 59(12), 1659–1741 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  38. Erdős L., Schlein B., Yau H.-T.: Derivation of the cubic non-linear Schrödinger equation from quantum dynamics of many-body systems. Invent. Math. 167(3), 515–614 (2007)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  39. Erdős L., Schlein B., Yau H.-T.: Rigorous derivation of the Gross–Pitaevskii equation. Phys. Rev. Lett. 98(4), 040404 (2007)

    Article  ADS  Google Scholar 

  40. Erdős L., Schlein B., Yau H.-T.: Rigorous derivation of the Gross–Pitaevskii equation with a large interaction potential. J. Am. Math. Soc. 22(4), 1099–1156 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  41. Erdős L., Schlein B., Yau H.-T.: Derivation of the Gross–Pitaevskii equation for the dynamics of Bose–Einstein condensate. Ann. Math. (2) 172(1), 291–370 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  42. Erdős L., Yau H.-T.: Derivation of the nonlinear Schrödinger equation from a many-body Coulomb system. Adv. Theor. Math. Phys. 5(6), 1169–1205 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  43. Fannes M., Spohn H., Verbeure A.: Equilibrium states for mean field models. J. Math. Phys. 21, 355–358 (1980)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  44. Fröhlich J., Knowles A., Pizzo A.: Atomism and quantization. J. Phys. A Math. Theor. 40, 3033–3045 (2007)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  45. Fröhlich, J., Knowles, A., Schlein, B., Sohinger, V.: A microscopic derivation of time-dependent correlation functions of the 1D cubic nonlinear Schrödinger equation. Preprint arXiv: 1703.04465

  46. Fröhlich J., Knowles A., Schwarz S.: On the mean-field limit of bosons with Coulomb two-body interaction. Commun. Math. Phys. 288(3), 1023–1059 (2009)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  47. Genovese, G., Lucá, R., Valeri, D.: Gibbs measures associated to the integrals of motion of the periodic dNLS. Sel. Math. New Ser. (2016). doi:10.1007/s000029-016-0225-2

  48. Glimm J., Jaffe A.: Quantum Physics, A Functional Integral Point of View, 2nd edn. Springer, Berlin (1987)

    Google Scholar 

  49. Ginibre J., Velo G.: The classical field limit of scattering theory for nonrelativistic many-boson systems. I. Commun. Math. Phys. 66(1), 37–76 (1979)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  50. Ginibre J., Velo G.: The classical field limit of scattering theory for nonrelativistic many-boson systems. II. Commun. Math. Phys. 68(1), 45–68 (1979)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  51. Grech P., Seiringer R.: The excitation spectrum for weakly interacting bosons in a trap. Commun. Math. Phys. 322, 559–591 (2013)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  52. Grillakis M., Machedon M.: Beyond mean field: on the role of pair excitations in the evolution of condensates. J. Fixed Point Theor. Appl. 14(1), 91–111 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  53. Grillakis M., Machedon M., Margetis D.: Second-order corrections to mean-field evolution of weakly interacting bosons. I. Commun. Math. Phys. 294(1), 273–301 (2010)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  54. Grillakis M., Machedon M., Margetis D.: Second-order corrections to mean-field evolution of weakly interacting bosons. II. Adv. Math. 228(3), 1788–1815 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  55. Hardy G.H.: Divergent Series. Oxford at the Clarendon Press, Oxford (1949)

    MATH  Google Scholar 

  56. Hepp K.: The classical limit for quantum mechanical correlation functions. Commun. Math. Phys. 35, 265–277 (1974)

    Article  ADS  MathSciNet  Google Scholar 

  57. Herr S., Sohinger V.: The Gross–Pitaevskii hierarchy on general rectangular tori. Arch. Ration. Mech. Anal. 220(3), 1119–1158 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  58. Kirkpatrick K., Schlein B., Staffilani G.: Derivation of the two dimensional nonlinear Schrödinger equation from many-body quantum dynamics. Am. J. Math. 133(1), 91–130 (2011)

    Article  MATH  Google Scholar 

  59. Kiessling M.K.-H.: The Hartree limit of Born’s ensemble for the ground state of a bosonic atom or ion. J. Math. Phys. 53, 095223 (2012)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  60. Knowles A., Pickl P.: Mean-field dynamics: singular potentials and rate of convergence. Commun. Math. Phys. 298(1), 101–138 (2010)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  61. Lebowitz J., Rose H., Speer E.: Statistical mechanics of the nonlinear Schrödinger equation. J. Stat. Phys. 50, 657–687 (1988)

    Article  ADS  MATH  Google Scholar 

  62. Lewin M., Nam P.T., Rougerie N.: Derivation of nonlinear Gibbs measures from many-body quantum mechanics. J. Éc. Polytech. Math. 2, 65–115 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  63. Lewin, M., Nam, P.T., Rougerie, N.: Bose gases at positive temperature and non-linear Gibbs measures. In: Proceedings of the 18th ICMP, Santiago de Chile, July 2015

  64. Lewin M., Nam P.T., Rougerie N.: Derivation of Hartree’s theory for generic mean-field Bose systems. Adv. Math. 254, 570–621 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  65. Lewin, M., Nam, P.T., Rougerie, N.: Gibbs measures based on 1D (an)harmonic oscillators as mean-field limits. Preprint arXiv: 1703.09422

  66. Lewin M., Nam P.T., Schlein B.: Fluctuations around Hartree states in the mean-field regime. Am. J. Math. 137, 1613–1650 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  67. Lewin, M., Nam, P.T., Serfaty, S., Solovej, J.P.: Bogoliubov spectrum of interacting Bose gases. Commun. Pure Appl. Math. 68(3), 413–471

  68. Lieb, E.H., Seiringer, R.: Proof of Bose–Einstein condensation for dilute trapped gases. Phys. Rev. Lett. 88, 170409–14 (2002)

  69. Lieb E.H., Seiringer R., Yngvason J.: Bosons in a trap: a rigorous derivation of the Gross–Pitaevskii energy functional. Phys. Rev. A. 61, 043602 (2000)

    Article  ADS  Google Scholar 

  70. Lieb E.H., Yau H.-T.: The Chandrasekhar theory of stellar collapse as the limit of quantum mechanics. Commun. Math. Phys. 112, 147–174 (1987)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  71. Nam P.T., Napiorkowski M.: Bogoliubov correction to the mean-field dynamics of interacting bosons. Adv. Theor. Math. Phys. 21, 683–738 (2017)

    Article  MathSciNet  Google Scholar 

  72. Neidhart H., Zagrebnov V.A.: The Trotter–Kato product formula for Gibbs semigroups. Commun. Math. Phys. 131, 333–346 (1990)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  73. Nevanlinna, F.: Zur Theorie der asymptotischen Potenzreihen, Ann. Acad. Sci. Fen. Ser. A12(3), 1918–1919

  74. Nahmod A., Oh T., Rey-Bellet L., Staffilani G.: Invariant weighted Wiener measures and almost sure global well-posedness for the periodic derivative NLS. J. Eur. Math. Soc. 14, 1275–1330 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  75. Nahmod A., Rey-Bellet L., Sheffield S., Staffilani G.: Absolute continuity of Brownian bridges under certain gauge transformations. Math. Res. Lett. 18, 875–887 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  76. Oh T., Quastel J.: On invariant Gibbs measures conditioned on mass and momentum. J. Math. Soc. Jpn. 65, 13–35 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  77. Raggio G.A., Werner R.F.: Quantum statistical mechanics of general mean field systems. Helv. Phys. Acta 62, 980–1003 (1989)

    MATH  MathSciNet  Google Scholar 

  78. Reed M., Simon B.: Methods of Modern Mathematical Physics, I: Functional Analysis. Academic Press, Edinburgh (1980)

    MATH  Google Scholar 

  79. Rodnianski I., Schlein B.: Quantum fluctuations and rate of convergence towards mean-field dynamics. Commun. Math. Phys. 291(1), 31–61 (2009)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  80. Schrödinger E.: Der stetige Übergang von der Mikro-zur Makromechanik. Die Naturwissenschaften 14(28), 664–666 (1926)

    Article  ADS  MATH  Google Scholar 

  81. Schrödinger, E.: Gesammelte Abhandlungen, Band 3, “Beiträge zur Quantentheorie”, p. 137

  82. Seiringer R.: The excitation spectrum for weakly interacting bosons. Commun. Math. Phys. 306, 565–578 (2011)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  83. Simon B.: The \({P(\Phi )_2}\) Euclidean (Quantum) Field Theory. Princeton University Press, Princeton (1974)

    Google Scholar 

  84. Simon, B.: Trace Ideals and Their Applications, 2nd edn. American Mathematical Society, Providence (2005)

  85. Sohinger V.: A rigorous derivation of the defocusing nonlinear Schrödinger equation on \({\mathbb{T}^3}\) from the dynamics of many-body quantum systems. Ann. Inst. Henri Poincaré Anal. Non Linéaire 32(6), 1337–1365 (2015)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  86. Sokal A.D.: An Improvement of Watson’s Theorem on Borel Summability. J. Math. Phys. 21(2), 261–263 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  87. Solovej J.P.: Asymptotics for bosonic atoms. Lett. Math. Phys. 20, 165–172 (1990)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  88. Spohn H.: Kinetic equations from Hamiltonian dynamics: Markovian limits. Rev. Mod. Phys. 52(3), 569–615 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  89. Thomann L., Tzvetkov N.: Gibbs measure for the periodic derivative nonlinear Schrödinger equation. Nonlinearity 23, 2771 (2010)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  90. Tzvetkov N.: Invariant measures for the Nonlinear Schrödinger equation on the disc. Dyn. PDE 2, 111–160 (2006)

    MATH  Google Scholar 

  91. Tzvetkov N.: Invariant measures for the defocusing nonlinear Schrödinger equation. Ann. Inst. Fourier (Grenoble) 58, 2543–2604 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  92. Watson, G.N.: A theory of asymptotic series. Philos. Trans. Soc. Lond. Ser. A 211, 279–313 (1912)

  93. Zhidkov, P.E.: An invariant measure for the nonlinear Schrödinger equation. Dokl. Akad. Nauk SSSR 317, 543–546 (1991) (Russian); translation in Sov. Math. Dokl. 43, 431–434

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin Schlein.

Additional information

Communicated by M. Salmhofer

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fröhlich, J., Knowles, A., Schlein, B. et al. Gibbs Measures of Nonlinear Schrödinger Equations as Limits of Many-Body Quantum States in Dimensions \({d \leqslant 3}\) . Commun. Math. Phys. 356, 883–980 (2017). https://doi.org/10.1007/s00220-017-2994-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-017-2994-7

Navigation