Skip to main content
Log in

Orbifolds and Cosets of Minimal \({\mathcal{W}}\)-Algebras

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Let \({\mathfrak{g}}\) be a simple, finite-dimensional Lie (super)algebra equipped with an embedding of \({\mathfrak{s}\mathfrak{l}_2}\) inducing the minimal gradation on \({\mathfrak{g}}\). The corresponding minimal \({\mathcal{W}}\)-algebra \({\mathcal{W}^k(\mathfrak{g}, e_{-\theta})}\) introduced by Kac and Wakimoto has strong generators in weights \({1,2,3/2}\), and all operator product expansions are known explicitly. The weight one subspace generates an affine vertex (super)algebra \({V^{k'}(\mathfrak{g}^{\natural})}\), where \({\mathfrak{g}^{\natural} \subset \mathfrak{g}}\) denotes the centralizer of \({\mathfrak{s}\mathfrak{l}_2}\). Therefore, \({\mathcal{W}^k(\mathfrak{g}, e_{-\theta})}\) has an action of a connected Lie group \({G^{\natural}_0}\) with Lie algebra \({\mathfrak{g}^{\natural}_0}\), where \({\mathfrak{g}^{\natural}_0}\) denotes the even part of \({\mathfrak{g}^{\natural}}\). We show that for any reductive subgroup \({G \subset G^{\natural}_0}\), and for any reductive Lie algebra \({\mathfrak{g}' \subset \mathfrak{g}^{\natural}}\), the orbifold \({\mathcal{O}^k = \mathcal{W}^k(\mathfrak{g}, e_{-\theta})^{G}}\) and the coset \({\mathcal{C}^k = {\rm Com}(V(\mathfrak{g}'),\mathcal{W}^k(\mathfrak{g}, e_{-\theta}))}\) are strongly finitely generated for generic values of \({k}\). Here \({V(\mathfrak{g}')}\) denotes the affine vertex algebra associated to \({\mathfrak{g}'}\). We find explicit minimal strong generating sets for \({\mathcal{C}^k}\) when \({\mathfrak{g}' = \mathfrak{g}^{\natural}}\) and \({\mathfrak{g}}\) is either \({\mathfrak{s}\mathfrak{l}_n}\), \({\mathfrak{s}\mathfrak{p}_{2n}}\), \({\mathfrak{s}\mathfrak{l}(2|n)}\) for \({n \neq 2}\), \({\mathfrak{p}\mathfrak{s}\mathfrak{l}(2|2)}\), or \({\mathfrak{o}\mathfrak{s}\mathfrak{p}(1|4)}\). Finally, we conjecture some surprising coincidences among families of cosets \({\mathcal{C}_k}\) which are the simple quotients of \({\mathcal{C}^k}\), and we prove several cases of our conjecture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adamovic D.: A realization of certain modules for the N = 4 superconformal algebra and the affine Lie algebra \({{A}_{2}^{(1)}}\) . Transfor. Groups 21(2), 299–327 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  2. Adamovic D., Milas A.: On the triplet vertex algebra W(p). Adv. Math. 217, 2664–2699 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Adamovic, D., Kac, VG., Möseneder Frajria, P., Papi, P., Perse, O.: Conformal embeddings of affine vertex algebras in minimal W-algebras I: structural results, to appear in J. Algebra. arXiv:1602.04687

  4. Adamovic, D., Kac, V.G., Möseneder Frajria, P., Papi, P., Perse, O.: Conformal embeddings of affine vertex algebras in minimal W-algebras II: decompositions. arXiv:1604.00893

  5. Afshar, H.R., Creutzig, T., Grumiller, D., Hikida, Y., Ronne, P.B.: Unitary \({\mathcal{W}}\)-algebras and three-dimensional higher spin gravities with spin one symmetry. J. High Energy Phys. 6, 063 (2014)

  6. Adamovic D., Perse O.: Fusion rules and complete reducibility of certain modules for affine Lie algebras. J. Algebra Appl. 13, 1350062 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Al-Ali, M., Linshaw, A.: The \({{\mathbb{Z}}_2}\)-orbifold of the \({{\mathcal{W}}_3}\)-algebra. Comm. Math. Phys. 353(3), 1129–1150 (2017)

  8. Arakawa T.: A remark on the C 2 cofiniteness condition on vertex algebras. Math. Z. 270(1-2), 559–575 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Arakawa T.: Rationality of Bershadsky-Polyalov vertex algebras. Commun. Math. Phys. 323(2), 627–633 (2013)

    Article  ADS  MATH  Google Scholar 

  10. Arakawa T.: Associated varieties of modules over Kac-Moody algebras and C 2-cofiniteness of \({\mathcal{W}}\)-algebras. Int. Math. Res. Not. 2015, 11605–11666 (2015)

    MathSciNet  MATH  Google Scholar 

  11. Arakawa T.: Rationality of \({{\mathcal{W}}}\)-algebras: principal nilpotent cases. Ann. Math. 182(2), 565–604 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Arakawa, T., Creutzig, T., Linshaw, A.: Cosets of Bershadsky-Polyakov algebras and rational \({{\mathcal{W}}}\)-algebras of type A. arXiv:1511.09143

  13. Arakawa, T., Moreau, A.: Joseph ideals and lisse minimal W-algebras. J. Inst. Math. Jussieu (published online)

  14. Arakawa, T., Moreau, A.: Sheets and associated varieties of affine vertex algebras. arXiv:1601.05906

  15. Auger, J., Creutzig, T., Ridout, D.: Modularity of logarithmic parafermion vertex algebras arXiv:1704.05168

  16. Borcherds R.: Vertex operator algebras, Kac-Moody algebras and the monster. Proc. Nat. Acad. Sci. USA 83, 3068–3071 (1986)

    Article  ADS  MATH  Google Scholar 

  17. Creutzig, T., Gannon, T.: Logarithmic conformal field theory, log-modular tensor categories and modular forms. arXiv:1605.04630

  18. Creutzig, T., Gannon, T.: The theory of C 2-cofinite VOAs. (in preparation)

  19. Creutzig, T., Kanade, S., Linshaw, A.R.: Simple current extensions beyond semi-simplicity. arXiv:1511.08754

  20. Creutzig, T., Kanade, S., Linshaw, A., Ridout, D.: Schur-Weyl duality for Heisenberg cosets. arXiv:1611.00305

  21. Creutzig, T., Kanade, S., McRae, R.: Tensor categories for vertex operator superalgebra extensions arXiv:1705.05017

  22. Creutzig T., Linshaw A.: The super \({{\mathcal{W}}_{1+\infty}}\) algebra with integral central charge. Trans. Am. Math. Soc. 367(8), 5521–5551 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  23. Creutzig, T., Linshaw, A.: Cosets of affine vertex algebras inside larger structures. arXiv:1407.8512v4

  24. Creutzig T., Linshaw A.: Orbifolds of symplectic fermion algebras. Trans. Am. Math. Soc. 369(1), 467–494 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  25. Creutzig T., Ridout D., Wood S.: Coset constructions of logarithmic (1,p)-models. Lett. Math. Phys. 104(5), 553–583 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. De Sole, A.: Vertex algebras generated by primary fields of low conformal weight. Ph.D. Thesis, Massachusetts Institute of Technology (2003)

  27. Dong C., Lam C.H., Yamada H.: W-algebras related to parafermion algebras. J. Algorithm 322(7), 2366–2403 (2009)

    MathSciNet  MATH  Google Scholar 

  28. Dong C., Mason G.: On quantum Galois theory. Duke Math. J. 86(2), 305–321 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  29. Dong, C., Mason, G.: Integrability of C 2-cofinite vertex operator algebras. Int. Math. Res. Not., Art. ID 80468, pp 15 (2006)

  30. Dong, C., Li, H., Mason, G.: Compact automorphism groups of vertex operator algebras. Internat. Math. Res. Not. 18, 913–921 (1996)

  31. Frenkel, E., Ben-Zvi, D.: Vertex Algebras and Algebraic Curves, Math. Surveys and Monographs, Vol. 88, American Math. Soc (2001)

  32. Feigin B., Semikhatov A.: \({\mathcal{W}_n^{(2)}}\) algebras. Nucl. Phys. B 698(3), 409–449 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Frenkel, I.B., Huang, Y.-Z., Lepowsky, J.: On axiomatic approaches to vertex operator algebras and modules. Mem. Am. Math. Soc. 104(494), viii+64 (1993)

  34. Frenkel I.B., Lepowsky J., Meurman A.: Vertex Operator Algebras and the Monster. Academic Press, New York (1988)

    MATH  Google Scholar 

  35. Frenkel I.B., Zhu Y.C.: Vertex operator algebras associated to representations of affine and Virasoro algebras. Duke Math. J. 66(1), 123–168 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  36. Genra, N.: Screening operators for \({\mathcal{W}}\)-algebras. Sel. Math. New Ser. (published online) (2017)

  37. Goodman, R., Wallach, N.: Symmetry, representations, and invariants. Graduate Texts in Mathematics, p. 255. Springer (2009)

  38. Huang Y.-Z., Kirillov A. Jr, Lepowsky J.: Braided tensor categories and extensions of vertex operator algebras, Comm. Math. Phys. 337, 1143–1159 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Kac, V.: Vertex Algebras for Beginners. University Lecture Series, Vol. 10. American Math. Soc (1998)

  40. Kac V., Roan S., Wakimoto M.: Quantum reduction for affine superalgebras. Commun. Math. Phys. 241(2-3), 307–342 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. Kac V., Wakimoto M.: Quantum reduction and representation theory of superconformal algebras. Adv. Math. 185(2), 400–458 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  42. Kac V., Wakimoto M.: Corrigendum to: “Quantum reduction and representation theory of superconformal algebras. Adv. Math. 193(2), 453–455 (2005)

    Article  MathSciNet  Google Scholar 

  43. Kac V., Wakimoto M.: Integrable highest weight modules over affine superalgebras and Appell’s function. Commun. Math. Phys. 215(3), 631–682 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. Kawasetsu, K.: \({\mathcal{W}}\)-algebras with non-admissible levels and the Deligne exceptional series, Int. Math. Res. Not. rnw240 (2016)

  45. Li H.: Vertex algebras and vertex Poisson algebras. Commun. Contemp. Math. 6, 61–110 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  46. Linshaw A.: Invariant theory and the \({{\mathcal{W}}_{1+\infty}}\) algebra with negative integral central charge. J. Eur. Math. Soc. 13(6), 1737–1768 (2011)

    MathSciNet  MATH  Google Scholar 

  47. Linshaw A.: A Hilbert theorem for vertex algebras. Transform. Groups 15(2), 427–448 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  48. Linshaw A.: Invariant theory and the Heisenberg vertex algebra. Int. Math. Res. Not. 17, 4014–4050 (2012)

    MathSciNet  MATH  Google Scholar 

  49. Linshaw A.: Invariant subalgebras of affine vertex algebras. Adv. Math. 234, 61–84 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  50. Linshaw A.: The structure of the Kac-Wang-Yan algebra. Commun. Math. Phys. 345(2), 545–585 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  51. Miyamoto, M.: C 1-cofiniteness and fusion products for vertex operators algebras. Conformal Field Theories and Tensor Categories. In: Proceedings of a Workshop Held at Beijing International Center for Mathematical Research, Mathematical Lectures from Peking University, pp. 271–279 (2014)

  52. Miyamoto M.: Modular invariance of vertex operator algebra satisfying C 2-cofiniteness. Duke Math. J. 122, 51–91 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  53. Sergeev A.: An analog of the classical invariant theory for Lie superalgebras. I. Mich. Math. J. 49(1), 113–146 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  54. Sergeev A.: An analog of the classical invariant theory for Lie superalgebras. II. Mich. Math. J. 49(1), 147–168 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  55. Thielemans, K.: A Mathematica package for computing operator product expansions. Int. J. Mod. Phys. C2, 787 (1991)

  56. Wang W.: \({\mathcal{W}_{1+\infty}}\)-algebra, \({\mathcal{W}_3}\)-algebra, and Friedan-Martinec-Shenker bosonization. Commun. Math. Phys. 195(1), 95–111 (1998)

    Article  ADS  Google Scholar 

  57. Weyl H.: The Classical Groups: Their Invariants and Representations. Princeton University Press, Princeton (1946)

    MATH  Google Scholar 

  58. Zamolodchikov, A.B.: Infinite extra symmetries in two-dimensional conformal quantum field theory. (Russian). Teoret. Mat. Fiz. 65 (1985), 347–359. English translation. Theoret. Math. Phys. 65, 1205–1213 (1985)

  59. Zhu C.J.: The complete structure of the nonlinear W 4 and W 5 algebras from quantum Miura transformation. Phys. Lett. B 316, 264–274 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  60. Zhu C.J.: The BRST quantization of the nonlinear W 2 and W 4 algebras. Nucl. Phys. B 418, 379–399 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  61. Zhu Y.C.: Modular invariants of characters of vertex operators. J. Am. Math. Soc 9, 237–302 (1996)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew R. Linshaw.

Additional information

Communicated by Y. Kawahigashi

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arakawa, T., Creutzig, T., Kawasetsu, K. et al. Orbifolds and Cosets of Minimal \({\mathcal{W}}\)-Algebras. Commun. Math. Phys. 355, 339–372 (2017). https://doi.org/10.1007/s00220-017-2901-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-017-2901-2

Navigation