Skip to main content
Log in

Universal Positive Mass Theorems

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

In this paper, we develop a general study of contributions at infinity of Bochner–Weitzenböck-type formulas on asymptotically flat manifolds, inspired by Witten’s proof of the positive mass theorem. As an application, we show that similar proofs can be obtained in a much more general setting as any choice of an irreducible natural bundle and a very large choice of first-order operators may lead to a positive mass theorem along the same lines if the necessary curvature conditions are satisfied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Akutagawa K., Neves A.: 3-manifolds with Yamabe invariant greater than that of \({\mathbb{R}P^3}\). J. Diff. Geom. 75, 359–386 (2007)

    MathSciNet  MATH  Google Scholar 

  2. Andersson L., Dahl M.: Scalar curvature rigidity for asymptotically locally hyperbolic manifolds. Ann. Glob. Anal. Geom. 16, 1–27 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bartnik R.: The mass of an asymptotically flat manifold. Commun. Pure Appl. Math 39, 661–693 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bourguignon J.P., Gauduchon P.: Spineurs, opérateurs de Dirac et variations de métriques. Commun. Math. Phys. 144, 581–599 (1992)

    Article  ADS  MATH  Google Scholar 

  5. Branson T.: Stein-Weiss operators and ellipticity. J. Funct. Anal. 151, 334–383 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bray H., Neves A.: Classification of prime 3-manifolds with Yamabe invariant greater than \({\mathbb{R}P^3}\). Ann. Math. 159, 407–424 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Calderbank D., Gauduchon P., Herzlich M.: Refined Kato inequalities and conformal weights in Riemannian geometry. J. Funct. Anal. 173, 214–255 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chruściel P.T., Herzlich M.: The mass of asymptotically hyperbolic Riemannian manifolds. Pac. J. Math. 212, 231–264 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dai X.: A positive mass theorem for spaces with asymptotic SUSY compactification. Commun. Math. Phys. 244, 335–345 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Fegan D.: Conformally invarant first order differential operators. Q. J. Math. Oxford 27, 371–378 (1976)

    Article  MATH  Google Scholar 

  11. Fulton W., Harris J.: Representation theory, Grad. Texts Math vol. 129. Springer, Berlin (1991)

    Google Scholar 

  12. Gauduchon P.: Structures de Weyl et théorèmes d’annulation sur une variété conforme. Ann. Scuola Norm. Sup. Pisa 18, 563–629 (1991)

    MathSciNet  MATH  Google Scholar 

  13. Homma Y.: Bochner-Weitzenböck formulas and curvature actions on Riemannian manifolds. Trans. Am. Math. Soc. 358, 87–114 (2005)

    Article  MATH  Google Scholar 

  14. Jammes P.: Un théorème de la masse positive pour le problème de Yamabe en dimension paire. J. Reine Angew. Math. 650, 101–106 (2011)

    MathSciNet  Google Scholar 

  15. Labbi M.L.: On Weitzenböck curvature operators. Math. Nachr. 288, 402–411 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Lee J., Parker T.: The Yamabe problem. Bull. Am. Math. Soc. 17, 37–91 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lockhart R.B.: Fredholm properties of a class of elliptic operators on noncompact manifolds. Duke Math. J. 48, 289–312 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  18. Maerten D.: Positive energy-momentum theorem for AdS-asymptotically hyperbolic manifolds. Ann. Henri Poincaré 7, 975–1011 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Maerten D., Minerbe V.: A mass for asymptotically complex hyperbolic manifolds. Ann. Scuola Norm. Sup. Pisa 11, 875–902 (2012)

    MathSciNet  MATH  Google Scholar 

  20. Minerbe V.: Mass for ALF manifolds. Commun. Math. Phys. 289, 925–955 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Parker T.H.: Gauge choice in Witten’s energy expression. Commun. Math. Phys. 100, 471–480 (1985)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Parker T.H., Taubes C.H.: On Witten’s proof of the positive energy theorem. Commun. Math. Phys. 84, 223–238 (1982)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Schoen R., Yau S.-T.: On the proof of the positive-mass conjecture in general relativity. Commun. Math. Phys. 65, 45–76 (1979)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Semmelmann U., Weingart G.: The Weitzenböck machine. Compos. Math. 146, 507–540 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. Witten E.: A simple proof of the positive energy theorem. Commun. Math. Phys. 80, 381–402 (1981)

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Herzlich.

Additional information

Communicated by P. T. Chruściel

The author is supported in part by the project ANR-12-BS01-004 ‘Geometry and topology of open manifolds’ of the French National Agency for Research.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Herzlich, M. Universal Positive Mass Theorems. Commun. Math. Phys. 351, 973–992 (2017). https://doi.org/10.1007/s00220-016-2777-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-016-2777-6

Navigation