Skip to main content
Log in

Effect of applying elicitors to Vitis vinifera L. cv. Monastrell at different ripening times on the complex carbohydrates of the resulting wines

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

The application of elicitors, such as methyl jasmonate (MeJ) and benzothiadiazole (BTH), has provided satisfactory results by increasing the polyphenol content of grapevines. However, in the case of some treated grape varieties, it is difficult to extract their phenolic compounds into the wine, because of variations in the components of the skin cell wall (SCW) and the potential effects on some complex carbohydrates (polysaccharides and oligosaccharides). This paper attempts to ascertain whether the individual application of MeJ and BTH at two points of the maturation cycle (veraison and mid-ripening) of Monastrell grapes, influences the content of complex carbohydrates released into wines. The application of elicitors in the vineyard did not affect the concentration of mannoproteins (MPs) (from yeast) in the resulting wine. However, MeJ, BTH and MeJ + BTH treatments (at veraison or mid-ripening) reduced the concentrations of ramnogalacturonans type II (RG-II) and total polysaccharides (TPs) (both from grapes) released into the wine. Results suggest that a reduction of pectic derivatives and/or a reinforcement of SCW occurred as a result of the action of these elicitors, decreasing the release of polysaccharides and oligosaccharides into the wine during maceration. However, sensory analysis found that tasters were not able to distinguish between wines from control and treated grapes. Further years of study are needed, in this and other varieties and locations, to determine the extent of possible cell wall modifications associated with elicitor treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

AF:

Alcoholic fermentation

BTH:

Benzothiadiazole

GC–MS:

Gas chromatography-mass spectrometry

MPs:

Mannoproteins

MeJ:

Methyl jasmonate

PRAGs:

Polysaccharides rich in arabinose and galactose

RG-II:

Rhamnogalacturonans type II

SCW:

Skin cell wall

References

  1. Cutler GJ, Nettleton JA, Ross JA et al (2008) Dietary flavonoid intake and risk of cancer in postmenopausal women: The Iowa Women’s Health Study. Int J Cancer 123:664–671. https://doi.org/10.1002/ijc.23564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Commenges D, Scotet V, Renaud S et al (2000) Intake of flavonoids and risk of dementia. Eur J Epidemiol 16:357–363. https://doi.org/10.1023/A:1007614613771

    Article  CAS  PubMed  Google Scholar 

  3. Arts I, Hollman P (2005) Polyphenols and disease risk in epidemiologic studies. Am J Clin Nutr. https://doi.org/10.1093/ajcn/81.1.317s

    Article  PubMed  Google Scholar 

  4. Dimitrov D, Yoncheva T, Haygarov V, Iliev A (2021) Phenolic content and atioxidant activity of red grapes from international, local and hybrid grapevine varieties grown in central Northern Bulgaria. Food Environ Saf J 20:101–112. https://doi.org/10.4316/fens.2021.012

    Article  CAS  Google Scholar 

  5. Dimitrov D, Yoncheva T, Haygarov V (2022) Study of the phenolic composition and antioxidant activity of white and red wines obtained from introduced, local and hybrid grapevine varieties from the region of central Northern Bulgaria. J Microbiol Biotechnol Food Sci https://doi.org/10.55251/jmbfs.5541

  6. Ruiz-García Y, Gómez-Plaza E (2013) Elicitors: a tool for improving fruit phenolic content. Agriculture 3:33–52. https://doi.org/10.3390/agriculture3010033

    Article  Google Scholar 

  7. Delaunois B, Farace G, Jeandet P et al (2014) Elicitors as alternative strategy to pesticides in grapevine? Current knowledge on their mode of action from controlled conditions to vineyard. Environ Sci Pollut Res 21:4837–4846. https://doi.org/10.1007/s11356-013-1841-4

    Article  Google Scholar 

  8. Boller T, Felix G (2009) A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annu Rev Plant Biol 60:379–407. https://doi.org/10.1146/annurev.arplant.57.032905.105346

    Article  CAS  PubMed  Google Scholar 

  9. Radman R, Saez T, Bucke C, Keshavarz T (2003) Elicitation of plants and microbial cell systems. Biotechnol Appl Biochem 37:91. https://doi.org/10.1042/ba20020118

    Article  CAS  PubMed  Google Scholar 

  10. Klarzynski O, Fritig B (2001) Stimulation of plant defense responses. Comptes Rendus l’Academie des Sci Ser III 324:953–963. https://doi.org/10.1016/S0764-4469(01)01371-3

    Article  CAS  Google Scholar 

  11. Kunz W, Schurter R, Maetzke T (1997) The chemistry of benzothiadiazole plant activators. Pestic Sci 50:275–282. https://doi.org/10.1002/(SICI)1096-9063(199708)50:4%3c275::AID-PS593%3e3.0.CO;2-7

    Article  CAS  Google Scholar 

  12. Gil-Muñoz, Bautista-Ortín AB, Ruiz-García Y, et al (2017) Improving phenolic and chromatic characteristics of Monastrell, Merlot and Syrah wines by using methyl jasmonate and benzothiadiazole. J Int des Sci la Vigne du Vin 51:17–27. https://doi.org/10.20870/oeno-one.2017.51.1.1814

  13. Ruiz-García Y, Gil-Muñoz R, López-Roca JM et al (2013) Increasing the phenolic compound content of grapes by preharvest application of abcisic acid and a combination of methyl jasmonate and benzothiadiazole. J Agric Food Chem 61:3978–3983. https://doi.org/10.1021/jf400631m

    Article  CAS  PubMed  Google Scholar 

  14. Ruiz-García Y, Romero-Cascales I, Gil-Muñoz R et al (2012) Improving grape phenolic content and wine chromatic characteristics through the use of two different elicitors: Methyl jasmonate versus benzothiadiazole. J Agric Food Chem 60:1283–1290. https://doi.org/10.1021/jf204028d

    Article  CAS  PubMed  Google Scholar 

  15. Paladines-Quezada DF, Moreno-Olivares JD, Fernández-Fernández JI et al (2019) Elicitors and pre-fermentative cold maceration: Effects on polyphenol concentration in Monastrell grapes and wines. Biomolecules. https://doi.org/10.3390/biom9110671

    Article  PubMed  PubMed Central  Google Scholar 

  16. Gil-Muñoz R, Fernández-Fernández JI, Crespo-Villegas O, Garde-Cerdán T (2017) Elicitors used as a tool to increase stilbenes in grapes and wines. Food Res Int 98:34–39. https://doi.org/10.1016/j.foodres.2016.11.035

    Article  CAS  PubMed  Google Scholar 

  17. Ruiz-García Y, Romero-Cascales I, Bautista-Ortín AB et al (2013) Increasing bioactive phenolic compounds in grapes: response of six Monastrell grape clones to benzothiadiazole and methyl jasmonate treatments. Am J Enol Vitic 64:459–465. https://doi.org/10.5344/ajev.2013.13038

    Article  CAS  Google Scholar 

  18. Ruiz-García Y, López-Roca JM, Bautista-Ortín AB et al (2014) Effect of combined use of benzothiadiazole and methyl jasmonate on volatile compounds of Monastrell wine. Am J Enol Vitic 65:238–243. https://doi.org/10.5344/ajev.2014.13119

    Article  CAS  Google Scholar 

  19. Giménez-Bañón MJ, Moreno-Olivares JD, Paladines-Quezada DF et al (2022) Effects of methyl jasmonate and nano-methyl jasmonate treatments on monastrell wine volatile composition. Molecules 2022:2878. https://doi.org/10.3390/molecules27092878

    Article  CAS  Google Scholar 

  20. Paladines-Quezada DF, Fernández-Fernández JI, Moreno-Olivares JD et al (2021) Application of elicitors in two ripening periods of Vitis vinifera L. cv Monastrell: Influence on anthocyanin concentration of grapes and wines. Molecules 26:1689. https://doi.org/10.3390/molecules26061689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Paladines-Quezada DF, Moreno-Olivares JD, Fernández-Fernández JI et al (2022) Application of elicitors at two maturation stages of Vitis vinifera L. cv monastrell : changes in skin cell walls. Chemistry (Easton) 4:98–111. https://doi.org/10.3390/chemistry4010008

    Article  CAS  Google Scholar 

  22. Paladines-Quezada DF, Moreno-Olivares JD, Fernández-Fernández JI et al (2019) Influence of methyl jasmonate and benzothiadiazole on the composition of grape skin cell walls and wines. Food Chem 277:691–697. https://doi.org/10.1016/j.foodchem.2018.11.029

    Article  CAS  PubMed  Google Scholar 

  23. Vidal S, Williams P, Doco T et al (2003) The polysaccharides of red wine: Total fractionation and characterization. Carbohydr Polym 54:439–447. https://doi.org/10.1016/S0144-8617(03)00152-8

    Article  CAS  Google Scholar 

  24. Riu-Aumatell M, López-Barajas M, López-Tamames E, Buxaderas S (2002) Influence of yield and maturation index on polysaccharides and other compounds of grape juice. J Agric Food Chem 50:4604–4607. https://doi.org/10.1021/jf020035d

    Article  CAS  PubMed  Google Scholar 

  25. Vidal S, Williams P, O’Neill MA, Pellerin P (2001) Polysaccharides from grape berry cell walls. Part I: Tissue distribution and structural characterization of the pectic polysaccharides. Carbohydr Polym 45:315–323. https://doi.org/10.1016/S0144-8617(00)00285-X

    Article  CAS  Google Scholar 

  26. Pellerin P, Cabanis JC (2000) Los glúcidos. In: Flanzy C (ed) Enología: Fundamentos Científicos y Tecnológicos. AMV Ediciones, Ediciones Mundi-Prensa, Madrid, pp 66–96

  27. Apolinar-Valiente R (2011) Pared celular de uva y polisacáridos de vinos de distinta procedencia, elaborados mediante tecnologías enzimáticas y de frío. (Tesis Doctoral). Universidad de Murcia. Murcia-España

  28. Poncet-Legrand C, Doco T, Williams P, Vernhet A (2007) Inhibition of grape seed tannin aggregation by wine mannoproteins: effect of polysaccharide molecular weight. Am J Enol Vitic 58:87–91

    Google Scholar 

  29. De Freitas V, Carvalho E, Mateus N (2003) Study of carbohydrate influence on protein-tannin aggregation by nephelometry. Food Chem 81:503–509. https://doi.org/10.1016/S0308-8146(02)00479-X

    Article  CAS  Google Scholar 

  30. Soares SI, Gonçalves RM, Fernandes IVA et al (2009) Mechanistic approach by which polysaccharides inhibit α-amylase/ procyanidin aggregation. J Agric Food Chem 57:4352–4358. https://doi.org/10.1021/jf900302r

    Article  CAS  PubMed  Google Scholar 

  31. Chalier P, Angot B, Delteil D et al (2007) Interactions between aroma compounds and whole mannoprotein isolated from Saccharomyces cerevisiae strains. Food Chem 100:22–30. https://doi.org/10.1016/j.foodchem.2005.09.004

    Article  CAS  Google Scholar 

  32. SIAM (2019) Sistema de Información Agrario de Murcia. http://siam.imida.es/apex/f?p=101:46:5540041647757103. Accessed 20 Dec 2019

  33. OIV (2018) Organisation Internationale de la Vigne et du Vin. France, Paris

    Google Scholar 

  34. Martínez-Lapuente L, Apolinar-Valiente R, Guadalupe Z et al (2018) Polysaccharides, oligosaccharides and nitrogenous compounds change during the ageing of Tempranillo and Verdejo sparkling wines. J Sci Food Agric 98:291–303. https://doi.org/10.1002/jsfa.8470

    Article  CAS  PubMed  Google Scholar 

  35. García M, Apolinar-Valiente R, Williams P et al (2017) Polysaccharides and oligosaccharides produced on Malvar wines elaborated with Torulaspora delbrueckii CLI 918 and Saccharomyces cerevisiae CLI 889 native yeasts from D.O. “Vinos de Madrid.” J Agric Food Chem 65:6656–6664. https://doi.org/10.1021/acs.jafc.7b01676

    Article  CAS  PubMed  Google Scholar 

  36. Quijada-Morín N, Williams P, Rivas-Gonzalo JC et al (2014) Polyphenolic, polysaccharide and oligosaccharide composition of Tempranillo red wines and their relationship with the perceived astringency. Food Chem 154:44–51. https://doi.org/10.1016/j.foodchem.2013.12.101

    Article  CAS  PubMed  Google Scholar 

  37. Apolinar-Valiente R, Williams P, Romero-Cascales I et al (2013) Polysaccharide composition of monastrell red wines from four different Spanish terroirs: Effect of wine-making techniques. J Agric Food Chem 61:2538–2547. https://doi.org/10.1021/jf304987m

    Article  CAS  PubMed  Google Scholar 

  38. Albersheim P, Nevins DJDJ, English PD et al (1967) A method for the analysis of sugars in plant cell-wall polysaccharides by gas-liquid chromatography. Carbohydr Res 5:340–345. https://doi.org/10.1016/s0008-6215(00)80510-8

    Article  CAS  Google Scholar 

  39. Apolinar-Valiente R, Williams P, Mazerolles G et al (2014) Effect of enzyme additions on the oligosaccharide composition of Monastrell red wines from four different wine-growing origins in Spain. Food Chem 156:151–159. https://doi.org/10.1016/j.foodchem.2014.01.093

    Article  CAS  PubMed  Google Scholar 

  40. ISO-4120 (1983) International Standard Organization. Methodology. Sensory analysis. Triangular test

  41. Portu J, Santamaría P, López-Alfaro I et al (2015) Methyl jasmonate foliar application to tempranillo vineyard improved grape and wine phenolic content. J Agric Food Chem 63:2328–2337. https://doi.org/10.1021/jf5060672

    Article  CAS  PubMed  Google Scholar 

  42. Fernández-Marín MI, Puertas B, Guerrero RF et al (2014) Preharvest methyl jasmonate and postharvest UVC treatments: Increasing stilbenes in wine. J Food Sci 79:C310–C317. https://doi.org/10.1111/1750-3841.12368

    Article  CAS  PubMed  Google Scholar 

  43. Boulton RB, Singleton VL, Bisson LF et al (1999) Yeast and biochemistry of ethanol fermentation. Principles and Practices of Winemaking. Springer, US, pp 102–192

    Chapter  Google Scholar 

  44. BOE 97. Disposición 593 (2012) Orden AAA/828/2012, de 9 de abril, por la que se modifica el Reglamento de la Denominación de Origen “Jumilla” y de su Consejo Regulador

  45. Waters EJ, Pellerin P, Brillouet JM (1994) A Saccharomyces mannoprotein that protects wine from protein haze. Carbohydr Polym 23:185–191. https://doi.org/10.1016/0144-8617(94)90101-5

    Article  CAS  Google Scholar 

  46. Apolinar-Valiente R, Ruiz-García Y, Williams P et al (2018) Preharvest application of elicitors to Monastrell grapes: Impact on wine polysaccharide and oligosaccharide composition. J Agric Food Chem 66:11151–11157. https://doi.org/10.1021/acs.jafc.8b05231

    Article  CAS  PubMed  Google Scholar 

  47. Ducasse MA, Canal-Llauberes RM, de Lumley M et al (2010) Effect of macerating enzyme treatment on the polyphenol and polysaccharide composition of red wines. Food Chem 118:369–376. https://doi.org/10.1016/j.foodchem.2009.04.130

    Article  CAS  Google Scholar 

  48. Moore JP, Farrant JM, Driouich A (2008) A role for pectin-associated arabinans in maintaining the flexibility of the plant cell wall during water deficit stress. Plant Signal Behav 3:102–104. https://doi.org/10.4161/psb.3.2.4959

    Article  PubMed  PubMed Central  Google Scholar 

  49. Moore JP, Nguema-Ona EE, Vicré-Gibouin M et al (2013) Arabinose-rich polymers as an evolutionary strategy to plasticize resurrection plant cell walls against desiccation. Planta 237:739–754. https://doi.org/10.1007/s00425-012-1785-9

    Article  CAS  PubMed  Google Scholar 

  50. Pellerin P, Doco T, Vidal S et al (1996) Structural characterization of red wine rhamnogalacturonan II. Carbohydr Res 290:183–197. https://doi.org/10.1016/0008-6215(96)00139-5

    Article  CAS  PubMed  Google Scholar 

  51. Pérez S, Rodríguez-Carvajal MA, Doco T (2003) A complex plant cell wall polysaccharide: Rhamnogalacturonan II. A structure in quest of a function. Biochimie 85:109–121. https://doi.org/10.1016/S0300-9084(03)00053-1

    Article  CAS  PubMed  Google Scholar 

  52. Doco T, Quellec N, Moutounet M, Pellerin P (1999) Polysaccharide patterns during the aging of Carignan noir red wines. Am J Enol Vitic 50:25–32

    CAS  Google Scholar 

  53. Martínez-Lapuente L, Guadalupe Z, Ayestarán B et al (2013) Changes in polysaccharide composition during sparkling wine making and aging. J Agric Food Chem 61:12362–12373. https://doi.org/10.1021/jf403059p

    Article  CAS  PubMed  Google Scholar 

  54. Guadalupe Z, Martínez-Pinilla O, Garrido Á et al (2012) Quantitative determination of wine polysaccharides by gas chromatography-mass spectrometry (GC-MS) and size exclusion chromatography (SEC). Food Chem 131:367–374. https://doi.org/10.1016/j.foodchem.2011.08.049

    Article  CAS  Google Scholar 

  55. Ayestarán B, Guadalupe Z, León D (2004) Quantification of major grape polysaccharides (Tempranillo v.) released by maceration enzymes during the fermentation process. In: Analytica Chimica Acta. Elsevier, pp 29–39

  56. Garde-Cerdán T, Martínez-Gil AM, Lorenzo C et al (2011) Implications of nitrogen compounds during alcoholic fermentation from some grape varieties at different maturation stages and cultivation systems. Food Chem 124:106–116. https://doi.org/10.1016/j.foodchem.2010.05.112

    Article  CAS  Google Scholar 

  57. Gutiérrez-Gamboa G, Portu J, Santamaría P et al (2017) Effects on grape amino acid concentration through foliar application of three different elicitors. Food Res Int 99:688–692. https://doi.org/10.1016/j.foodres.2017.06.022

    Article  CAS  PubMed  Google Scholar 

  58. Ribéreau-Gayon P, Dubourdieu D, Donèche B, Lonvaud A (2006) Handbook of Enology: The microbiology of wine and vinifications, 2nd ed. John Wiley & Sons, Ltd., Chichester-England

  59. Ducasse MA, Williams P, Meudec E et al (2010) Isolation of Carignan and Merlot red wine oligosaccharides and their characterization by ESI-MS. Carbohydr Polym 79:747–754. https://doi.org/10.1016/j.carbpol.2009.10.001

    Article  CAS  Google Scholar 

  60. Pellerin P, Vidal S, Williams P, Brillouet JM (1995) Characterization of five type II arabinogalactan-protein fractions from red wine of increasing uronic acid content. Carbohydr Res 277:135–143. https://doi.org/10.1016/0008-6215(95)00206-9

    Article  CAS  PubMed  Google Scholar 

  61. Doco T, Vuchot P, Cheynier V, Moutounet M (2003) Structural modification of wine arabinogalactans during aging on lees. Am J Enol Vitic 54:150–157

    CAS  Google Scholar 

  62. Ducasse MA, Williams P, Canal-Llauberes RM et al (2011) Effect of macerating enzymes on the oligosaccharide profiles of Merlot red wines. J Agric Food Chem 59:6558–6567. https://doi.org/10.1021/jf2003877

    Article  CAS  PubMed  Google Scholar 

  63. Apolinar-Valiente R, Romero-Cascales I, Williams P et al (2015) Oligosaccharides of Cabernet Sauvignon, Syrah and Monastrell red wines. Food Chem 179:311–317. https://doi.org/10.1016/j.foodchem.2015.01.139

    Article  CAS  PubMed  Google Scholar 

  64. Roessler EB, Pangborn RM, Sidel JL, Stone H (1978) Expanded statistical tables for estimating significance in paired—preference, paired–difference, duo–trio and triangle tests. J Food Sci 43:940–943. https://doi.org/10.1111/j.1365-2621.1978.tb02458.x

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the staff of the ¨Oenological Station of Jumilla¨ (Murcia, Spain) and the ¨Joint Research Unit 1083 (INRA), Sciences for Enology¨ (Montpellier, France), for their partial support of this study.

Funding

This work was made possible by financial assistance from the INIA (Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria) (Project: RTA2013-00053-C03-02), and IMIDA (Instituto Murciano de Investigación y Desarrollo Agrario y Medioambiental). Diego F. Paladines-Quezada is the holder of an FPI fellowship from the Spanish Government.

Author information

Authors and Affiliations

Authors

Contributions

All authors have given approval to the final version of the manuscript. DFPQ: Conceptualization, Investigation, Formal Analysis, Data Curation, Writing-Original Draft, Writing—Review and Editing. RGM: Conceptualization, Investigation, Validation, Funding Acquisition, Project Administration, Resources, Writing—Review and Editing. RAV: Conceptualization, Investigation, Formal Analysis, Data Curation, Writing—Review and Editing. PW: Methodology, Formal Analysis, Supervision and Data Curation. JIFF: Investigation and Methodology and Data Curation. TD: Conceptualization, Investigation, Validation, Resources, Writing—Review and Editing.

Corresponding author

Correspondence to Diego F. Paladines-Quezada.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest. The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paladines-Quezada, D.F., Gil-Muñoz, R., Apolinar-Valiente, R. et al. Effect of applying elicitors to Vitis vinifera L. cv. Monastrell at different ripening times on the complex carbohydrates of the resulting wines. Eur Food Res Technol 248, 2369–2381 (2022). https://doi.org/10.1007/s00217-022-04053-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-022-04053-4

Keywords

Navigation