Skip to main content
Log in

Utilization of ‘early green harvest’ and non-Saccharomyces cerevisiae yeasts as a combined approach to face climate change in winemaking

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

Present study aimed to ascertain whether the combination of two factors, i.e., time of harvest and type of yeast, can significantly moderate the effect of climate change on Chardonnay wine composition. In this view, three Chardonnay musts obtained from grapes at different harvest date [technological maturity ‘as control’; delayed harvest; a mixture of ‘early (green) harvest’ with delayed harvest ‘as alternative approach’] and three selected yeast strains [Saccharomyces cerevisiae ‘as control’; hybrid Saccharomyces cerevisiae/Saccharomyces paradoxus; scalar alternative approach with Starmerella bacillaris and hybrid Saccharomyces cerevisiae/Saccharomyces paradoxus] were used to design and compare six different trials, replicated at pilot level (n. total fermentations: 18). Wines were evaluated in terms of sensory and chemical parameters (alcohol, acidity, organic acids, phenolic compounds and glycerol) and results tested by statistical analysis. Although the wine alcohol content decreased at the best by ~ 1.2% v/v, whereas the total acidity increased up to ~ 2.5 g/L, the results from sensory evaluation highlighted that the proposed ‘alternative approach’ may cause excessive acidity and bitterness perception, therefore, further deacidification and fining treatments may be needed. The present approach to reduce the alcohol content of wine and increase its total acidity is simple, inexpensive and applicable in all wineries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Godden P, Wilkes E, Johnson D (2015) Trends in the composition of Australian wine 1984–2014. Aust J Grape Wine Res 21:741–753

    Article  CAS  Google Scholar 

  2. Neumann PA, Matzarakis A (2014) Potential climate change impacts on winegrape must density and titratable acidity in southwest Germany. Clim Res 59:161–172

    Article  Google Scholar 

  3. Petrie PR, Sadras VO (2008) Advancement of grapevine maturity in Australia between 1993 and 2006: putative causes, magnitude of trends and viticultural consequences. Aust J Grape Wine Res 14:33–45

    Article  Google Scholar 

  4. Teslić N, Zinzani G, Parpinello GP, Versari A (2018) Climate change trends, grape production, and potential alcohol concentration in wine from the “Romagna Sangiovese” appellation area (Italy). Theor Appl Climatol ​131:793–803​

    Article  Google Scholar 

  5. García-Martín N, Perez-Magariño S, Ortega-Heras M, González-Huerta C, Mihnea M, González-Sanjosé ML, Palacio L, Prádanos P, Hernández A (2010) Sugar reduction in musts with nanofiltration membranes to obtain low alcohol-content wines. Sep Purif Technol 76:158–170

    Article  CAS  Google Scholar 

  6. Gil M, Estévez S, Kontoudakis N, Fort F, Canals JM, Zamora F (2013) Influence of partial dealcoholization by reverse osmosis on red wine composition and sensory characteristics. Eur Food Res Technol 237:481–488

    Article  CAS  Google Scholar 

  7. Duchêne E, Schneider C (2005) Grapevine and climatic changes: a glance at the situation in Alsace. Agronomie 25:93–99

    Google Scholar 

  8. Jones GV (2012) Climate, grapes, and wine: structure and suitability in a changing climate. In: Proc 28th IHC—IS Viti&Climate, Lisbon, Portugal, pp 19–28

  9. Martínez-Lüscher J, Sánchez-Díaz M, Delrot S, Aguirreolea J, Pascual I, Gomès E (2016) Ultraviolet-B alleviates the uncoupling effect of elevated CO2 and increased temperature on grape berry (Vitis vinifera cv. Tempranillo) anthocyanin and sugar accumulation. Aust J Grape Wine Res 22:87–95

    Article  CAS  Google Scholar 

  10. Coombe BG (1989) The grape berry as a sink. Acta Hortic 239:149–158

    Article  Google Scholar 

  11. Lakso AN, Kliewer WM (1975) The influence of temperature on malic acid metabolism in grape berries: I. Enzyme responses. Plant Physiol 56:370–372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Jones GV (2006) Past and future impacts of climate change on wine quality. 3rd international wine business research conference, Montpellier, pp 1–16

  13. Belancic A, Agosin E, Ibacache A, Bordeu E, Baumes R, Razungles A, Bayonove C (1997) Influence of sun exposure on the aromatic composition of chilean Muscat grape cultivars Moscatel de Alejandria and Moscatel rosada. Am J Enol Vitic 48:181–186

    CAS  Google Scholar 

  14. Allen M, Lacey M (1993) Methoxypyrazine grape flavour: influence of climate, cultivar and viticulture. Die Wein-wissenschaft 48:211–213

    CAS  Google Scholar 

  15. Vršič S, Šuštar V, Pulko B, Šumenjak TK (2014) Trends in climate parameters affecting winegrape ripening in northeastern Slovenia. Clim Res 58:257–266

    Article  Google Scholar 

  16. Tomasi D, Jones GV, Giust M, Lovat L, Gaiotti F (2011) Grapevine phenology and climate change: relationships and trends in the Veneto Region of Italy for 1964–2009. Am J Enol Vitic 62:329–339

    Article  Google Scholar 

  17. Ramos MC, Jones GV, Yuste J (2015) Spatial and temporal variability of cv. Tempranillo phenology and grape quality within the Ribera del Duero DO (Spain) and relationships with climate. Int J Biometeorol 59:1849–1860

    Article  CAS  PubMed  Google Scholar 

  18. Frioni T, Tombesi S, Silvestroni O, Lanari V, Bellincontro A, Sabbatini P, Gatti M, Poni S, Palliotti A (2016) Postbudburst spur pruning reduces yield and delays fruit sugar accumulation in Sangiovese in central Italy. Am J Enol Vitic 67:419–425

    Article  CAS  Google Scholar 

  19. Palliotti A, Panara F, Silvestroni O, Lanari V, Sabbatini P, Howell GS, Gatti M, Poni S (2013) Influence of mechanical postveraison leaf removal apical to the cluster zone on delay of fruit ripening in Sangiovese (Vitis vinifera L.) grapevines. Aust J Grape Wine Res 19:369–377

    CAS  Google Scholar 

  20. Kontoudakis N, Esteruelas M, Fort F, Canals JM, Zamora F (2011) Use of unripe grapes harvested during cluster thinning as a method for reducing alcohol content and pH of wine. Aust J Grape Wine Res 17:230–238

    Article  CAS  Google Scholar 

  21. Salgado CM, Fernández-Fernández E, Palacio L, Hernández A, Prádanos P (2015) Alcohol reduction in red and white wines by nanofiltration of musts before fermentation. Food Bioprod Process 96:285–295

    Article  CAS  Google Scholar 

  22. Harbertson JF, Mireles MS, Harwood ED, Weller KM, Ross CF (2009) Chemical and sensory effects of saignée, water addition, and extended maceration on high brix must. Am J Enol Vitic 60:450–460

    CAS  Google Scholar 

  23. Kutyna DR, Varela C, Henschke PA, Chambers PJ, Stanley GA (2010) Microbiological approaches to lowering ethanol concentration in wine. Trends Food Sci Technol 21:293–302

    Article  CAS  Google Scholar 

  24. Contreras A, Hidalgo C, Henschke PA, Chambers PJ, Curtin C, Varela C (2014) Evaluation of non-Saccharomyces yeasts for the reduction of alcohol content in wine. Appl Environ Microbiol 80:1670–1678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gobbi M, Comitini F, Domizio P, Romani C, Lencioni L, Mannazzu I, Ciani M (2013) Lachancea thermotolerans and Saccharomyces cerevisiae in simultaneous and sequential co-fermentation: a strategy to enhance acidity and improve the overall quality of wine. Food Microbiol 33:271–281

    Article  CAS  PubMed  Google Scholar 

  26. Diban N, Athes V, Bes M, Souchon I (2008) Ethanol and aroma compounds transfer study for partial dealcoholization of wine using membrane contactor. J Memb Sci 311:136–146

    Article  CAS  Google Scholar 

  27. EC (1990) Commission regulation (EC) No 2676/90 of 17 September 1990 determining community methods for the analysis of wines. Off J Eur Commun 272:64–73

    Google Scholar 

  28. Castellari M, Versari A, Spinabelli U, Galassi S, Amati A (2000) Method for the analysis of organic acids, carbohydrates and alcohols in grape musts. J Liq Chromatogr Relat Technol 23:2047–2056

    Article  CAS  Google Scholar 

  29. Singleton VL, Rossi JA (1965) Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Vitic 16:144–158

    CAS  Google Scholar 

  30. Lawless HT, Heymann H (2010) Sensory evaluation of food: principles and practices, 2nd edn. Springer-Verlag, New York

    Book  Google Scholar 

  31. ISO (1977) Sensory analysis—apparatus—wine tasting glass. International Organization for Standardization, Geneva

    Google Scholar 

  32. Boulton RB, Singleton VL, Bisson LF, Kunkee RE (1999) Principles and practices of winemaking. Springer, New York

    Book  Google Scholar 

  33. Orlic S, Redzepovic S, Jeromel A, Herjavec S, Iacumin L (2007) Influence of indigenous Saccharomyces paradoxus strains on Chardonnay wine fermentation aroma. Int J Food Sci Technol 42:95–101

    Article  CAS  Google Scholar 

  34. Romboli Y, Mangani S, Buscioni G, Granchi L, Vincenzini M (2015) Effect of Saccharomyces cerevisiae and Candida zemplinina on quercetin, vitisin A and hydroxytyrosol contents in Sangiovese wines. World J Microbiol Biotechnol 31:1137–1145

    Article  CAS  PubMed  Google Scholar 

  35. Giaramida P, Ponticello G, Di Maio S, Squadrito M, Genna G, Barone E, Scacco A, Corona O, Amore G, Di Stefano R, Oliva D (2013) Candida zemplinina for production of wines with less alcohol and more glycerol. S Afr J Enol Vitic 34:204–211

    CAS  Google Scholar 

  36. Varela C, Sengler F, Solomon M, Curtin C (2016) Volatile flavour profile of reduced alcohol wines fermented with the non-conventional yeast species Metschnikowia pulcherrima and Saccharomyces uvarum. Food Chem 209:57–64

    Article  CAS  PubMed  Google Scholar 

  37. Englezos V, Rantsiou K, Cravero F, Torchio F, Ortiz-Julien A, Gerbi V, Rolle L, Cocolin L (2016) Starmerella bacillaris and Saccharomyces cerevisiae mixed fermentations to reduce ethanol content in wine. Appl Microbiol Biotechnol 100:5515–5526

    Article  CAS  PubMed  Google Scholar 

  38. Pérez-Torrado R, Oliveira BM, Zemančková J, Sychrová H, Querol A (2016) Alternative glycerol balance strategies among Saccharomyces species in response to winemaking stress. Front Microbiol 7:1–13

    Article  Google Scholar 

  39. Noble AC, Bursick GF (1984) The contribution of glycerol to perceived viscosity and sweetness in white wine. Am J Enol Vitic 35:110–112

    CAS  Google Scholar 

  40. Laguna L, Bartolomé B, Moreno-Arribas MV (2017) Mouthfeel perception of wine: oral physiology, components and instrumental characterization. Trends Food Sci Technol 59:49–59

    Article  CAS  Google Scholar 

  41. Cejudo-Bastante MJ, Hermosín-Gutiérrez I, Castro-Vázquez LI, Pérez-Coello MS (2011) Hyperoxygenation and bottle storage of Chardonnay white wines: effects on color-related phenolics, volatile composition, and sensory characteristics. J Agric Food Chem 59:4171–4182

    Article  CAS  PubMed  Google Scholar 

  42. Olejar KJ, Fedrizzi B, Kilmartin PA (2016) Enhancement of Chardonnay antioxidant activity and sensory perception through maceration technique. LWT Food Sci Technol 65:152–157

    Article  CAS  Google Scholar 

  43. Redzepovic S, Orlic S, Majdak A, Kozina B, Volschenk H, Viljoen-Bloom M (2003) Differential malic acid degradation by selected strains of Saccharomyces during alcoholic fermentation. Int J Food Microbiol 83:49–61

    Article  CAS  PubMed  Google Scholar 

  44. Torrea D, Varela C, Ugliano M, Ancin-Azpilicueta C, Leigh Francis I, Henschke PA (2011) Comparison of inorganic and organic nitrogen supplementation of grape juice—effect on volatile composition and aroma profile of a Chardonnay wine fermented with Saccharomyces cerevisiae yeast. Food Chem 127:1072–1083

    Article  CAS  PubMed  Google Scholar 

  45. OIV (2016) Compendium of international methods of wine and must analysis, 1st edn. International Organisation of vine and wine, Paris

    Google Scholar 

  46. Wang XQ, Su HN, Zhang QH, Yang PP (2013) The effects of pulsed electric fields applied to red and white wines during bottle ageing on organic acid contents. J Food Sci Technol 52:171–180

    Article  CAS  Google Scholar 

  47. Pan W, Jussier D, Terrade N, Yada RY, Mira de Orduña R (2011) Kinetics of sugars, organic acids and acetaldehyde during simultaneous yeast-bacterial fermentations of white wine at different pH values. Food Res Int 44:660–666

    Article  CAS  Google Scholar 

  48. Kliewer WM, Howarth L, Omori M (1967) Concentrations of tartaric acid and malic acids and their salts in Vitis Vinifera grapes. Am J Enol Vitic 18:42–54

    CAS  Google Scholar 

  49. Sadoudi M, Tourdot-Maréchal R, Rousseaux S, Steyer D, Gallardo-Chacón JJ, Ballester J, Vichi S, Guérin-Schneider R, Caixach J, Alexandre H (2012) Yeast-yeast interactions revealed by aromatic profile analysis of Sauvignon Blanc wine fermented by single or co-culture of non-Saccharomyces and Saccharomyces yeasts. Food Microbiol 32:243–253

    Article  CAS  PubMed  Google Scholar 

  50. Coulter A, Godden P, Isak P (2004) Succinic acid—how is it formed, what is its effect on titratable acidity, and what factors influence its concentration in wine? Wine Ind J 19:16–25

    Google Scholar 

  51. Arikawa Y, Kobayashi M, Kodaira R, Shimosaka M, Muratsubaki H, Enomoto K, Okazaki M (1999) Isolation of sake yeast strains possessing various levels of succinate- and/or malate-producing abilities by gene disruption or mutation. J Biosci Bioeng 87:333–339

    Article  CAS  PubMed  Google Scholar 

  52. Thoukis G, Ueda M, Wright D (1965) The formation of succinic acid during alcoholic fermentation. Am J Enol Vitic 16:1–8

    CAS  Google Scholar 

  53. Shimazu Y, Watanabe M (1981) Effects of yeast strains and environmental conditions on formation of organic acids in must during fermentation. J Ferment Technol 59:27–32

    CAS  Google Scholar 

  54. Chamkha M, Cathala B, Cheynier V, Douillard R (2003) Phenolic composition of champagnes from Chardonnay and Pinot Noir vintages. J Agric Food Chem 51:3179–3184

    Article  CAS  PubMed  Google Scholar 

  55. Ong BY, Nagel CW (1978) Hydroxycinnamic acid-tartaric acid ester content in mature grapes and during the maturation of white Riesling grapes. Am J Enol Vitic 29:277–281

    CAS  Google Scholar 

  56. Adams DO (2006) Phenolics and ripening in grape berries. Am J Enol Vitic 57:249–256

    CAS  Google Scholar 

Download references

Acknowledgements

The first author acknowledges staff from the Interdepartmental Centre for Industrial Research Energy and Environment, the Interdepartmental Center for Industrial Agri-Food Research and the Faculty of BioScience and Technology for Food, Agriculture and Environment for their contribution. The first author acknowledges the Erasmus Mundus JoinEU-SEE PENTA program and the Fund for young talents of the Republic of Serbia for the PhD fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Versari.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Human and animal right statement

This article does not contain any studies with human or animal subjects.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 335 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teslić, N., Patrignani, F., Ghidotti, M. et al. Utilization of ‘early green harvest’ and non-Saccharomyces cerevisiae yeasts as a combined approach to face climate change in winemaking. Eur Food Res Technol 244, 1301–1311 (2018). https://doi.org/10.1007/s00217-018-3045-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-018-3045-0

Keywords

Navigation