Skip to main content
Log in

Binary combinations of natural phenolic compounds with gallic acid or with its alkyl esters: an approach to understand the antioxidant interactions

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

The antioxidant activity of equimolar binary combinations of ten natural phenolic compounds (vanillic acid, vanillin, hydroquinone, caffeic acid, ellagic acid, resveratrol, genistein, kaempferol, quercetin and catechin) with gallic acid or its alkyl esters (propyl-, octyl- and dodecyl gallates) was determined measuring the scavenging 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) radical cation activity. Statistical significant antagonism was found for all combinations with gallic acid and for most combinations with alkyl esters. Statistical significant synergism was observed only for three combinations of dodecyl gallate with resveratrol, genistein or catechin. The antagonistic and synergistic effects were analysed from regeneration mechanisms, and most of them can be explained according to the one-electron reduction potentials of the phenolics selected. These results may facilitate the use of combinations of antioxidants, as part of the hurdle technology, which can be applied to different aspects of food preservation, in order to increase shelf life and retain nutritional quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Valko M, Leibfritz D, Moncola J, Cronin MTD, Mazura M, Telser J (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell B 39:44–84

    Article  CAS  Google Scholar 

  2. Pokorný J (2007) Are natural antioxidants better –and safer-than synthetic antioxidants? Eur J Lipid Sci Technol 109:629–642

    Article  Google Scholar 

  3. Martínez ML, Penci MC, Ixtaina V, Ribotta PD, Maestri D (2013) Effect of natural and synthetic antioxidants on the oxidative stability of walnut oil under different storage conditions. LWT Food Sci Technol 51:44–50

    Article  Google Scholar 

  4. Hwang K-E, Kim H-W, Song D-H, Kim Y-J, Ham Y-K, Lee J-W, Choi Y-S, Kim Ch-J (2015) Effects of antioxidant combinations on shelf stability of irradiated chicken sausage during storage. Radiat Phys Chem 106:315–319

    Article  CAS  Google Scholar 

  5. Abarikwu SO, Akiri OF, Durojaiye MA, Alabi AF (2014) Combined administration of curcumin and gallic acid inhibits gallic acid-induced suppression of steroidogenesis, sperm output, antioxidant defenses and inflammatory responsive genes. J Steroid Biochem Mol Biol 143:49–60

    Article  CAS  Google Scholar 

  6. Fernández-Álvarez L, del Valle P, de Arriaga D, García-Armesto MR, Rúa J (2014) Binary combinations of BHA and other natural and synthetic phenolics: antimicrobial activity against Staphylococcus aureus and antioxidant capacity. Food Control 42:303–309

    Article  Google Scholar 

  7. Choe E, Min DB (2009) Mechanisms of antioxidants in the oxidation of foods. Compr Rev Food Sci Food Saf 8:345–358

    Article  CAS  Google Scholar 

  8. Floegel A, Kim D-O, Chung S-J, Koo SI, Chun OK (2011) Comparison of ABTS/DPPH assays to measure antioxidant capacity in popular antioxidant-rich US foods. J Food Compost Anal 24:1043–1048

    Article  CAS  Google Scholar 

  9. EFSA (European Food Safety Authority) (2010) Scientific opinion on flavouring group evaluation 20, revision 2 (FGE.20Rev2): benzyl alcohols, benzaldehydes, a related acetal, benzoic acids, and related esters from chemical groups 23 and 30. EFSA panel on food contact materials, enzymes, flavourings and processing aids. EFSA J 8:1405

    Article  Google Scholar 

  10. Commission Regulation (EU) No 1129/2011 of 11 November 2011 amending Annex II to Regulation (EC) No. 1333/2008 of the European Parliament and of the Council by establishing a Union list of food additives. OJ L 295 54:1–177

  11. Kubo I, Masuoka N, Ha TJ, Shimizu K, Nihei K (2010) Multifunctional antioxidant activities of alkyl gallates. TOBCJ 3:1–11

    Article  CAS  Google Scholar 

  12. Gutiérrez-Larraínzar M, Rúa J, Caro I, de Castro C, de Arriaga D, García-Armesto MR, del Valle P (2012) Evaluation of antimicrobial and antioxidant activities of natural phenolic compounds against foodborne pathogens and spoilage bacteria. Food Control 26:555–563

    Article  Google Scholar 

  13. Gutiérrez-Fernández J, García-Armesto MR, Álvarez-Alonso R, del Valle P, de Arriaga D, Rúa J (2013) Antimicrobial activity of binary combinations of natural and synthetic phenolic antioxidants against Enterococcus faecalis. J Dairy Sci 96:4912–4920

    Article  Google Scholar 

  14. Gutiérrez-Larraínzar M, Rúa J, de Arriaga D, del Valle P, García-Armesto MR (2013) In vitro assessment of synthetic phenolic antioxidants for inhibition of foodborne Staphylococcus aureus, Bacillus cereus and Pseudomonas fluorescens. Food Control 30:393–399

    Article  Google Scholar 

  15. Ozgen M, Reese N, Jr Tulio AZ, Scheerens JC, Miller AR (2006) Modified 2,2-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) method to measure antioxidant capacity of selected small fruits and comparison to ferric reducing antioxidant power (FRAP) and 2,2´-diphenyl-1-picrylhydrazyl (DPPH) Methods. J Agric Food Chem 54:1151–1157

    Article  CAS  Google Scholar 

  16. Zyzelewicz D, Zaklos-Szyda M, Juskiewicz J, Bojczuk M, Oracz J, Budryn G, Miskiewicz K, Krysiak W, Zdunczyk Z, Jurgonski A (2016) Cocoa bean (Theobroma cacao L.) phenolic extracts as PTP1B inhibitors, hepatic HepG2 and pancreatic β-TC3 cell cytoprotective agents and their influence on oxidative stress in rats. Food Res Int 89:946–957

    Article  CAS  Google Scholar 

  17. Peyrat-Maillard MN, Cuvelier ME, Berset C (2003) Antioxidant activity of phenolic compounds in 2,2´-azobis(2-amidinopropane) dihydrochloride (AAPH)-induced oxidation: synergistic and antagonistic effects. J Am Oil Chem Soc 80:1007–1012

    Article  CAS  Google Scholar 

  18. Lu Z, Nie G, Belton PS, Tang H, Zhao B (2006) Structure-activity relationship analysis of antioxidant ability and neuroprotective effect of gallic acid derivatives. Neurochem Int 48:262–274

    Article  Google Scholar 

  19. Losada-Barreiro S, Bravo-Díaz C, Paiva-Martins F, Romsted LS (2013) Maxima in antioxidant distributions and efficiencies with increasing hydrophobicity of gallic acid and its alkyl esters. The pseudophase model interpretation of the “cutoff effect”. J Agric Food Chem 61:6533–6543

    Article  CAS  Google Scholar 

  20. Ji H-F, Zhang H-Y, Shen L (2006) Proton dissociation is important to understanding structure-activity relationships of gallic acid antioxidants. Bioorg Med Chem Lett 16:4095–4098

    Article  CAS  Google Scholar 

  21. Frankel EN, Huang SW, Kanner J, German JB (1994) Interfacial phenomena in the evaluation of antioxidants: bulk oil vs emulsions. J Agric Food Chem 42:1054–1059

    Article  CAS  Google Scholar 

  22. Koga T, Terao J (1995) Phospholipids increase radical-scavenging activity of vitamin E in a bulk oil model system. J Agric Food Chem 43:1450–1454

    Article  CAS  Google Scholar 

  23. Cuvelier C, Bondet V, Berset C (2000) Behaviour of phenolic antioxidants in a partitioned medium: structure-activity relationship. J Am Oil Chem Soc 77:819–823

    Article  CAS  Google Scholar 

  24. He S, Yan X (2013) From resveratrol to its derivatives: new sources of natural antioxidant. Curr Med Chem 20:1005–1017

    CAS  Google Scholar 

  25. Gunckel S, Santander P, Cordano G, Ferreira J, Muñoz S, Nunez-Vergara LJ, Squella JA (1998) Antioxidant activity of gallates: an electrochemical study in aqueous media. Chem Biol Interact 114:45–59

    Article  CAS  Google Scholar 

  26. Zhang D, Chu L, Liu Y, Wang A, Ji B, Wu W, Zhou F, Wei Y, Cheng Q, Cai S, Xie L, Jia G (2011) Analysis of the antioxidant capacities of flavonoids under different spectrophotometric assays using cyclic voltammetry and density functional theory. J Agric Food Chem 59:10277–10285

    Article  CAS  Google Scholar 

  27. Leopoldini M, Marino T, Russo N, Toscano M (2004) Antioxidant properties of phenolic compounds: H-atom versus electron transfer mechanism. J Phys Chem A 108:4916–4922

    Article  CAS  Google Scholar 

  28. Zhang J, Du F, Peng B, Lu R, Gao H, Zhou Z (2010) Structure, electronic properties, and radical scavenging mechanisms of daidzein, genistein, formononetin, and biochanin A: a density functional study. J Mol Struct THEOCHEM 955:1–6

    Article  CAS  Google Scholar 

  29. Senthil Kumar K, Kumaresan R (2012) A DFT study on the structural, electronic properties and radical scavenging mechanisms of calycosin, glycitein, pratensein and prunetin. Comput Theor Chem 985:14–22

    Article  CAS  Google Scholar 

  30. Lengyel J, Rimarčik J, Vagánek A, Klein E (2013) On the radical scavenging activity of isoflavones: thermodynamics of O–H bond cleavage. Phys Chem Chem Phys 15:10895–10903

    Article  CAS  Google Scholar 

  31. Komorsky-Lovrić Ŝ, Novak I (2011) Determination of ellagic acid in strawberries, raspberries and blackberries by square-wave voltammetry. Int J Electrochem Sci 6:4638–4647

    Google Scholar 

  32. Jovanovic SV, Steenken S, Hara Y, Simic MG (1996) Reduction potentials of flavonoid and model phenoxyl radicals. Which ring in flavonoids is responsible for antioxidant activity? J Chem Soc Perkin Trans 2:2497–2504

    Article  Google Scholar 

  33. Foley S, Navaratnam S, McGarvey DJ, Land EJ, Truscott TG, Rice-Evans CA (1999) Singlet oxygen quenching and the redox properties of hydroxycinnamic acids. Free Radic Biol Med 26:1202–1208

    Article  CAS  Google Scholar 

  34. Jovanovic SV, Hara Y, Steenken S, Simic MG (1995) Antioxidant potential of gallocatechins—a pulse-radiolysis and laser photolysis study. J Am Chem Soc 117:9881–9888

    Article  CAS  Google Scholar 

  35. Jovanovic SV, Steenken S, Tosic M, Marjanovic B, Simic MG (1994) Flavonoids as antioxidants. J Am Chem Soc 116:4846–4851

    Article  CAS  Google Scholar 

  36. Fang J-G, Zhou B (2008) Structure-activity relationship and mechanism of the tocopherol-regenerating activity of resveratrol and its analogues. J Agric Food Chem 56:11458–11463

    Article  CAS  Google Scholar 

  37. Kung KH, McBride MB (1988) Electron transfer processes between hydroquinone and iron oxides. Clay Clay Miner 36:303–309

    Article  CAS  Google Scholar 

  38. Han R-M, Tian Y-X, Liu Y, Chen Ch-H, Ai X-Ch, Zhang J-P, Skibsted LH (2009) Comparison of flavonoids and isoflavonoids as antioxidants. J Agric Food Chem 57:3780–3785

    Article  CAS  Google Scholar 

  39. Jovanovic SV, Simic MG (2000) Antioxidants in nutrition. Ann N Y Acad Sci 899:326–334

    Article  CAS  Google Scholar 

  40. Khopde SM, Priyadarsini I (2000) Application of Marcus theory of electron transfer for the reactions between HRP compound I and II and 2,4-disubstituted phenols. Biophys Chem 88:103–109

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Rúa.

Ethics declarations

Conflict of interest

None.

Compliance with ethical requirements

This article does not contain any studies with human or animal subjects.

Additional information

Javier Rúa and Pilar del Valle have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rúa, J., de Arriaga, D., García-Armesto, M.R. et al. Binary combinations of natural phenolic compounds with gallic acid or with its alkyl esters: an approach to understand the antioxidant interactions. Eur Food Res Technol 243, 1211–1217 (2017). https://doi.org/10.1007/s00217-016-2838-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-016-2838-2

Keywords

Navigation