Skip to main content
Log in

An environmentally friendly process for the production of extracts rich in phenolic antioxidants from Olea europaea L. and Cynara scolymus L. matrices

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

A sustainable extractive technology followed by membrane separation methods was applied to Olea europaea L. (leaves and pitted olive pulp) and Cynara scolymus L. by-products (leaves and stems), to obtain different standardized commercial extracts for application in the functional food industry, pharmaceutical and cosmetic fields. The entire treatment, PCT registered, consists of water extraction of the aforementioned vegetal material and the following steps of fractionation: (1) microfiltration (only for Olea); (2) ultrafiltration (only for Cynara); (3) nanofiltration (only for Olea); (4) reverse osmosis and final concentration by evaporation at low temperature or spray-dried technique. Thanks to these steps, different fractions enriched with phenolic compounds that have an economic value can be obtained. These fractions were characterized and quantified by HPLC/DAD-ESI/MS and then tested for their antiradical and antioxidant properties. The EC50 values by DPPH test were 6.76 × 10−3 mM for the Olea green leaves (GL) soft extract, 5.44 × 10−3 mM for the Olea dried leaves (DL) soft extract, and 1.22 × 10−3 mM in the case of the Olea OH-Tyr soft extract. The EC50 value of the Cynara GL soft extract was 3.25 × 10−3 mM. The ORAC results were 3632 ± 110.7 µmoL TE/g for OH-Tyr Olea soft extract, 1410 ± 62.1 µmoL TE/g for GL Olea soft extract, and finally 760 ± 12 µmoL TE/g for GL Cynara soft extract, confirming the highest antioxidant activity of hydroxytyrosol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

PCT:

Patent cooperation treaty

MF:

Microfiltration

UF:

Ultrafiltration

NF:

Nanofiltration

RO:

Reverse osmosis

OH-Tyr:

Hydroxytyrosol

MCC:

Monocaffeoylquinic acid

DCC:

Dicaffeoylquinic acid

GL:

Green leaves

DL:

Dried leaves

CMF:

Concentrate of microfiltration

CUF:

Concentrate of ultrafiltration

CNF:

Concentrate of nanofiltration

CRO:

Concentrate of reverse osmosis

PES:

Polyethersulfone

Soft Extract Olea GL:

Olea europaea fraction deriving from green leaves

Soft Extract Olea DL:

Olea europaea fraction deriving from dried leaves

Soft Extract Olea OH-Tyr:

Olea europaea fraction deriving from pitted olive pulp

Soft extract Cynara GL:

Cynara fraction deriving from green leaves

Spray-dried Cynara GL:

Cynara powder deriving from green leaves

DPPH:

(1.1-diphenyl-2-picrylhydrazil radical)

AR:

Antiradical activity

EC50:

Median effective concentration (required to induce a 50% effect)

ORAC:

Oxygen radical absorbance capacity

AAPH:

2,2′-Azobis(2-amidinopropane) dihydrochloride

TE:

Trolox equivalents

AUC:

Area under the curve

HPLC/DAD:

High-performance liquid chromatography/diode array detector

ESI-MS:

Electrospray mass spectrometry

API:

Atmosphere pressure ionization

BAT:

Best available technology

EPA:

Environmental protection agency

References

  1. Covas MI (2007) Olive oil and cardiovascular system. Pharmacol Res 55:175–186

    Article  CAS  Google Scholar 

  2. Saija A, Trombetta D, Tomaino A, Lo Cascio R, Princi P, Uccella N, Bonina F, Castelli F (1998) In vitro evaluation of the antioxidant activity and biomembrane interaction of the plant phenols oleuropein and hydroxytyrosol. Int J Pharm 166:123–133

    Article  CAS  Google Scholar 

  3. Benavente-García O, Castillo J, Lorente J, Ortunõ A, Del Rio JA (2000) Antioxidant activity of phenolics extracted from Olea europaea L. leaves. Food Chem 68:457–462

    Article  Google Scholar 

  4. Franconi F, Coinu R, Carta S, Urgeghe PP, Ieri F, Mulinacci N, Romani A (2006) Antioxidant effect of two virgin olive oils depends on the concentration and composition of minor polar compounds. J Agric Food Chem 54:3121–3125

    Article  CAS  Google Scholar 

  5. De Leonardis A, Aretini A, Alfano G, Macciola V, Ranalli G (2008) Isolation of a hydroxytyrosol-rich extract from olive leaves (Olea Europaea L.) and evaluation of its antioxidant properties and bioactivity. Eur Food Res Technol 226:653–659

    Article  CAS  Google Scholar 

  6. Medina E, de Castro A, Romero C, Ramírez E, Brenes M (2013) Effect of antimicrobial compounds from olive products on microorganisms related to health, food and agriculture. In: Méndez-Vilas A (ed) Microbial pathogens and strategies for combating them: science, technology and education, pp 1087–1094 © FORMATEX 2013

  7. Kukic´ J, Popovic´ V, Petrovic´ S, Mucaji P, Ciric´ A, Stojkovic´ D, Sokovic´ M (2008) Antioxidant and antimicrobial activity of Cynara cardunculus extracts. Food Chem 107:861–868

    Article  Google Scholar 

  8. Falleh H, Ksouri R, Chaieb K, Karray-Bouraoui N, Trabelsi N, Boulaaba M, Abdelly C (2008) Phenolic composition of Cynara cardunculus L. organs and their biological activities. C R Biol 331:372–379

    Article  CAS  Google Scholar 

  9. Fratianni F, Tucci M, De Palma M, Pepe R, Nazzaro F (2007) Polyphenolic composition in different parts of some cultivars of globe artichoke (Cynara cardunculus L. var. scolymus (L.) Fiori). Food Chem 104:1282–1286

    Article  CAS  Google Scholar 

  10. Romani A, Pinelli P, Cantini C, Cimato A, Heimler D (2006) Characterization of Violetto di Toscana a typical Italian variety of artichoke (Cynara scolymus L.). Food Chem 95:221–225

    Article  CAS  Google Scholar 

  11. Li J, Chase HA (2010) Applications of membrane techniques for purification of natural products. Biotechnol Lett 32:601–608

    Article  CAS  Google Scholar 

  12. Cassano A, Conidi C, Giorno L, Drioli E (2013) Fractionation of olive mill waste waters by membrane separation techniques. J Hazard Mater 248–249:185–193

    Article  Google Scholar 

  13. Garcia-Castello E, Cassano A, Criscuoli A, Conidi C, Drioli E (2010) Recovery and concentration of polyphenols from olive mill wastewaters by integrated membrane system. Water Res 44:3883–3892

    Article  CAS  Google Scholar 

  14. Ochando-Pulido JM, Martinez-Ferez A (2015) On the recent use of membrane technology for olive mill wastewater purification. Membranes 5:513–531

    Article  CAS  Google Scholar 

  15. Conidi C, Cassano A, Garcia-Castello E (2014) Valorization of artichoke wastewaters by integrated membrane process. Water Res 48:363–374

    Article  CAS  Google Scholar 

  16. PCT/IT/2009/09425529 by Pizzichini D, Russo C, Vitagliano M, Pizzichini M, Romani A, Ieri F, Pinelli P, Vignolini P, Phenofarm SRL. (Roma). Process for producing concentrated and refined actives from tissues and byproducts of Olea europaea with membrane technologies. EP 2338500 (A1), filing date 06/29/2011

  17. PCT/IT2008/000135 by Pizzichini M, Romani A, Pizzichini D, Russo C, Pinelli P (Roma). Process for producing refined nutraceutic extracts from artichoke waste and from other plants of the Cynara genus, filing date 04/01/08

  18. Romani A, Scardigli A, Ieri F, Banelli L, Pinelli P, Franconi F (2010) Phenolea R. new biophenolic fractions from different tissues of Olea europaea L. In: International conference of polyphenols, vol 2. Montpellier 23–27 agosto 2010, pp 466–468

  19. Pizzichini M, Russo C, Ferrero E, Tuccimei E (2009) Le tecnologie separative mediante membrana. ENEA. Report Ricerca Sistema Elettrico. RSE/2009/19

  20. Pinelli P, Galardi C, Mulinacci N, Vincieri FF, Cimato A, Romani A (2003) Minor polar compound and fatty acid analyses in monocultivar virgin olive oils from Tuscany. Food Chem 80:331–336

    Article  CAS  Google Scholar 

  21. Pinelli P, Agostini F, Comino C, Lanteri S, Portis E, Romani A (2007) Simultaneous quantification of caffeoyl esters and flavonoids in wild and cultivated cardoon leaves. Food Chem 105:1695–1701

    Article  CAS  Google Scholar 

  22. Heimler D, Vignolini P, Dini MG, Romani A (2005) Rapid tests to assess the antioxidant activity of Phaseolus vulgaris L. dry beans. J Agric Food Chem 53:3053–3056

    Article  CAS  Google Scholar 

  23. Ou B, Hampsch-Woodill M, Prior RL (2001) Development and validation of an improved oxygen radical absorbance capacity assay using fluorescein as the fluorescent probe. J Agric Food Chem 49:4619–4626

    Article  CAS  Google Scholar 

  24. Ninfali P, Mea G, Giorgini S, Rocchi M, Bacchiocca M (2005) Antioxidant capacity of vegetables, spices and dressing relevant to nutrition. Br J Nutr 93:257–266

    Article  CAS  Google Scholar 

  25. PCT/IT2009000246, RACE s.r.l. Integrated process for recovery of a polyphenol fraction and anaerobic digestion of olive mill wastes, filing date 05/06/09

  26. Tafesh A, Najami N, Jadoun J, Halahlih F, Riepl H, Azaizeh H (2011) Synergistic antibacterial effects of polyphenolic compounds from olive mill wastewater. Evid Based Complement Altern Med 2011:Art ID 431021. doi:10.1155/2011/431021

  27. PCT/IT/MI2014A000177 by Bargiacchi E, Bellotti P, Pinelli P, Costa G, Miele S, Romani A, Zambelli P, Scardigli A. Uso di estratto di tannini di castagno come additivo antiossidante, antimicrobico e per ridurre nitrosammine e micotossine, filing date 02/07/14

  28. Bargiacchi E, Bellotti P, Costa G, Miele S, Pinelli P, Romani A, Scardigli A, Zambelli P (2014) Use of chestnut tannin extract as antioxidant, antimicrobial additive and for reducing nitrosamines and mycotoxins. MI2014A000177, filing date 02/07/2014

  29. Forte VT, Cazzato AR, Borsacchi L, Romani A (2013) Listeria nelle carni. Nuove prospettive per la stabilizzazione. Le proprietà degli estratti naturali nelle preparazioni di carne fresca. Alimenti Bevande XV(2):35–40

    Google Scholar 

  30. Romani A, Pinelli P, Campo M, Corgna M (2014) Characterization of dietary supplements and their antioxidant activity in human serum. In: XXVIIth International conference on polyphenols & tannin conference, Nagoya 2–6 September 2014, Polyphenols Communication 2014, pp 433–434

Download references

Acknowledgements

The authors are grateful to Dr. Antonio Mele from LEVIUS VITA FOODS S.R.L. (Sesto F.no, FI, Italy) and VITA SAFER S.R.L. (Montecatini, PT, Italy) for providing plant and commercial fractions. The present study was funded with the EU Project LIFE13 ENV/IT/000461-EnVironmEntally fRiendly biomolecules from aGRicultural wastEs as substitutes of pesticides for plant disEases control (EVERGREEN), and the Project Eccellenze toscane tracciate natura benessere (Tuscany NATURBEN)-PRAF 2012-2015 Misura 1.2.e by Regione Toscana.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrizia Pinelli.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Compliance with ethics requirements

This study does not contain any experiment involving human or animal subjects.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Romani, A., Scardigli, A. & Pinelli, P. An environmentally friendly process for the production of extracts rich in phenolic antioxidants from Olea europaea L. and Cynara scolymus L. matrices. Eur Food Res Technol 243, 1229–1238 (2017). https://doi.org/10.1007/s00217-016-2835-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-016-2835-5

Keywords

Navigation