Skip to main content
Log in

Sensory and antigenic properties of enzymatic wheat gluten hydrolysates produced in an enzyme membrane reactor in comparison with batch

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

The aim of this study was to compare the sensory and antigenic properties of enzymatic wheat gluten hydrolysates produced with Flavourzyme and glutaminase in batch and continuous process, respectively. The hydrolysate samples were obtained by a standard batch process with microfiltration (16 µm) and ultrafiltration (10 kDa) and an optimized continuous enzyme membrane reactor (EMR) process with an ultrafiltration membrane (10 kDa). Two drying methods were applied: oven and freeze drying. Sensory evaluation showed that the EMR hydrolysates were significantly different and had an improved taste impact for the attributes “overall intensity,” “salty,” “umami” and “mushroom.” The antigenic potential of the EMR hydrolysates was reduced (222 ± 4 ppm gliadin) compared to batch microfiltered hydrolysate (9030 ± 89 ppm) and batch ultrafiltered hydrolysate (843 ± 49 ppm). The superior quality of wheat gluten hydrolysate from the EMR process compared to batch process was proven since sensory properties of wheat gluten hydrolysate were improved and the antigenic potential was reduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

AN:

Amino nitrogen

CSTR:

Continuously stirred reactor

EMR:

Enzyme membrane reactor

FAA:

Free amino groups

GTU:

Glutamine transforming units

p-NA:

para-Nitroaniline

MF:

Microfiltration

PPM:

Parts per million

TN:

Total nitrogen

UF:

Ultrafiltration

References

  1. Schlichterle-Cerny HAR, Amado R (2002) Analysis of taste-active compounds in an enzymatic hydrolysate of deamidated wheat gluten. J Agric Food Chem 50:1515–1522

    Article  Google Scholar 

  2. Li-Chan ECY, Cheung IWY (2010) In: Mine Y, Li-Chan E, Jiang B (eds) Bioactive proteins and peptides as functional foods and nutraceuticals. Wiley, Oxford

    Google Scholar 

  3. Aaslyng MD, Poll L, Nielsen PM, Flyge H (1999) Sensory, chemical, and sensometric studies of hydrolyzed vegetable protein produced by various processes. Eur Food Res Technol 209:227–236

    Article  CAS  Google Scholar 

  4. van den Oord AHA, van Wassenaar PD (1997) Umami peptides. Assessment of their alleged taste properties. Z Lebensm Unters For 205:125–130

    Article  Google Scholar 

  5. Park J-N, Ishida K, Watanabe T, Endoh K-I, Watanabe K, Murakami M, Abe H (2002) Taste effects of oligopeptides in a Vietnamese fish sauce. Fisheries Sci 68:921–928

    Article  CAS  Google Scholar 

  6. Beksan E, Schieberle P, Robert F, Blank I, Fay LB, Schlichtherle-Cerny H, Hofmann T (2003) Synthesis and sensory characterization of novel umami-tasting glutamate glycoconjugates. J Agric Food Chem 51:5428–5436

    Article  CAS  Google Scholar 

  7. M’Hir S, Rizzello CG, Di Cagno R, Cassone A, Hamdi M (2009) Use of selected enterococci and Rhizopus oryzae proteases to hydrolyse wheat proteins responsible for celiac disease. J Appl Microbiol 106:421–431

    Article  Google Scholar 

  8. Cabrera-Chavez F, Calderon de la Barca AM (2010) Trends in wheat technology and modification of gluten proteins for dietary treatment of coeliac disease patients. J Cereal Sci 52:337–341

    Article  CAS  Google Scholar 

  9. Merz M, Kettner L, Langolf E, Appel D, Blank I, Stressler T, Fischer L (2015) Production of wheat gluten hydrolysates with reduced antigenicity employing enzymatic hydrolysis combined with downstream unit operations. J Sci Food Agric 96:3358–3364

    Article  Google Scholar 

  10. Caputo I, Lepretti M, Martucciello S, Esposito C (2010) Enzymatic strategies to detoxify gluten: implications for celiac disease. Enzyme Res 2010:174354

    Article  Google Scholar 

  11. Kammoun R, Bejar S, Ellouz R (2003) Protein size distribution and inhibitory effect of wheat hydrolysates on Neutrase. Bioresource Technol 90:249–254

    Article  CAS  Google Scholar 

  12. Grimrath A, Berends P, Rabe S, Berger RG, Linke D (2011) Koji fermentation based on extracellular peptidases of Flammulina velutipes. Eur Food Res Technol 232:415–424

    Article  CAS  Google Scholar 

  13. Berends P, Appel D, Eisele T, Rabe S, Fischer L (2014) Performance of the enzymatic wheat gluten hydrolysis in batch and continuous processes using Flavourzyme. LWT-Food Sci Technol 58:534–540

    Article  CAS  Google Scholar 

  14. Merz M, Ewert J, Baur C, Appel D, Blank I, Stressler T, Fischer L (2015) Wheat gluten hydrolysis using isolated Flavourzyme peptidases: product inhibition and determination of synergistic effects using response surface methodology. J Mol Catal B-Enzym 122:218–226

    Article  CAS  Google Scholar 

  15. Giorno L, Drioli E (2000) Biocatalytic membrane reactors: applications and perspectives. Trends Biotechnol 18:339–349

    Article  CAS  Google Scholar 

  16. Eisele T, Stressler T, Kranz B, Fischer L (2013) Bioactive peptides generated in an enzyme membrane reactor using Bacillus lentus alkaline peptidase. Eur Food Res Technol 236:483–490

    Article  CAS  Google Scholar 

  17. Merz M, Eisele T, Claaßen W, Appel D, Rabe S, Stressler T, Fischer L (2015) Continuous long-term hydrolysis of wheat gluten using a principally food-grade enzyme membrane reactor system. Biochem Eng J 27:114–123

    Article  Google Scholar 

  18. Berends P, Merz M, Kranz B, Thaler T, Appel D, Rabe S, Blank I, Stressler T, Fischer L (2016) Optimization of an enzymatic wheat gluten hydrolysis process in an enzyme membrane reactor using a design of experiment approach. Eur Food Res Technol. doi:10.1007/s00217-016-2673-5

    Google Scholar 

  19. Anjani K, Kailasapathy K, Phillips M (2007) Microencapsulation of enzymes for potential application in acceleration of cheese ripening. Int Dairy J 17:79–86

    Article  CAS  Google Scholar 

  20. Novozymes (2001) Product Sheet Flavourzyme

  21. Kheadr EE, Vuillemard JC, El-Deeb SA (2003) Impact of liposome-encapsulated enzyme cocktails on cheddar cheese ripening. Food Res Int 36:241–252

    Article  CAS  Google Scholar 

  22. Eisele T, Stressler T, Kranz B, Fischer L (2013) Bioactive peptides generated in an enzyme membrane reactor using Bacillus lentus alkaline peptidase. Eur Food Res Technol 236:483–490

    Article  CAS  Google Scholar 

  23. Matissek R, Steiner G, Fischer M (2014) Lebensmittelanalytik. Springer, Heidelberg

    Book  Google Scholar 

  24. Eidgenossenschaft S (2007) Aminosäurestickstoff in Fleischextrakt. Sulze, Würze

    Google Scholar 

  25. Waters (2012) Acquity UPLC H-Class and H-Class bio amino acid analysis system guide. Waters, Milford

  26. Olsen JV, de Godoy LMF, Li G, Macek B, Mortensen P, Pesch R, Makarov A, Lange O, Horning S, Mann M (2005) Parts per million mass accuracy on an orbitrap mass spectrometer via lock mass injection into a C-trap. Mol Cell Proteomics 4:2010–2021

    Article  CAS  Google Scholar 

  27. Seki T, Kawasaki Y, Tamura M, Tada M, Okai H (1990) Further study on the salty peptide, ornithyl-β-alanine. Some effects of pH and additive ions on the saltiness. J Agric Food Chem 38:25–29

    Article  CAS  Google Scholar 

  28. Minkiewicz P, Dziuba J, Iwaniak A, Dziuba M, Darewicz M (2008) BIOPEP database and other programs for processing bioactive peptide sequences. J AOAC Int 91:965–980

    CAS  Google Scholar 

  29. Clemente A (2001) Enzymatic protein hydrolysates in human nutrition. Trends Food Sci Tech 11:254–262

    Article  Google Scholar 

  30. Oita S, Hayashi T, Ohnishi-Kameyama M (2009) Degradation of epitope peptides of wheat gliadin and glutenin for atopic dermatitis by crude proteases from germinated wheat seeds. Food Sci Technol Res 15:639–644

    Article  CAS  Google Scholar 

  31. Kahlenberg F, Sanchez D, Lachmann I, Tuckova L, Tlaskalova H, Mendez E, Mothes T (2006) Monoclonal antibody R5 for detection of putatively coeliac-toxic gliadin peptides. Eur Food Res Technol 222:78–82

    Article  CAS  Google Scholar 

  32. Valdes I, Garcia E, Llorente M, Mendez E (2003) Innovative approach to low-level gluten determination in foods using a novel sandwich enzyme-linked immunosorbent assay protocol. Eur J Gastroenterol Hepatol 15:465–474

    Article  CAS  Google Scholar 

  33. Businco L, Dreborg S, Einarsson R, Giampietro PG, Host A, Keller KM, Strobel S, Wahn U, Bjorksten B, Kjellman MN et al (1993) Hydrolysed cow’s milk formulae. Allergenicity and use in treatment and prevention. An ESPACI position paper. European Society of Pediatric Allergy and Clinical Immunology. Pediatr Allergy Immunol 4:101–111

    Article  CAS  Google Scholar 

  34. Hoffman KM, Sampson HA (1997) Serum specific-IgE antibodies to peptides detected in a casein hydrolysate formula. Pediatr Allergy Immunol 8:185–189

    Article  CAS  Google Scholar 

  35. Laurie GW, Ciclitira PJ, Ellis HJ, Pogany G (1995) Immunological and partial sequence identity of mouse BM180 with wheat α-gliadin. Biochem Bioph Res Co 217:10–15

    Article  CAS  Google Scholar 

  36. Sissons MJ, Blundell MJ, Hill AS, Skerritt JH (1999) Antibodies to N-terminal peptides of low Mr subunits of wheat glutenin. Part 1. Characterisation of the antibody response. J Cereal Sci 30:267–281

    Article  CAS  Google Scholar 

  37. Cornell HJ (1998) Partial in vitro digestion of active gliadin-related peptides in celiac disease. J Protein Chem 17:739–744

    Article  CAS  Google Scholar 

  38. Cornell HJ, Maxwell RJ (1982) Amino acid composition of gliadin fractions which may be toxic to individuals with coeliac disease. Clin Chim Acta 123:311–319

    Article  CAS  Google Scholar 

  39. Cornell HJ, Mothes T (1993) The activity of wheat gliadin peptides in in vitro assays for coeliac disease. Biochim Biophys Acta 1181:169–173

    Article  CAS  Google Scholar 

  40. Cornell HJ, Skerritt JH, Puy R, Javadpour M (1994) Studies of in vitro gamma-interferon production in coeliac disease as a response to gliadin peptides. Biochim Biophys Acta 1226:126–130

    Article  CAS  Google Scholar 

  41. Aaslyng MD, Martens M, Poll L, Nielsen PM, Flyge H, Larsen LM (1998) Chemical and sensory characterization of hydrolyzed vegetable protein, a savory flavoring. J Agr Food Chem 46:481–489

    Article  CAS  Google Scholar 

  42. Krupickova S, Tuckova L, Flegelova Z, Michalak M, Walters JRF, Whelan A, Harries J, Vencovsky J, Tlaskalova-Hogenova H (1999) Identification of common epitopes on gliadin, enterocytes, and calreticulin recognized by antigliadin antibodies of patients with coeliac disease. Gut 44:168–173

    Article  CAS  Google Scholar 

  43. Stern M, Ciclitira PJ, Van Eckert R, Feighery C, Janssen FW, Mendez E, Mothes T, Troncone R, Wieser H (2001) Analysis and clinical effects of gluten in coeliac disease. Eur J Gastroen Hepat 13:741–747

    Article  CAS  Google Scholar 

  44. Macritchie F (1992) Physicochemical properties of wheat proteins in relation to functionality. Adv Food Nutr Res 36:1–87

    Article  CAS  Google Scholar 

  45. Sturgess R, Day P, Ellis HJ, Lundin KE, Gjertsen HA, Kontakou M, Ciclitira PJ (1994) Wheat peptide challenge in coeliac disease. Lancet 343:758–761

    Article  CAS  Google Scholar 

  46. Vader LW, Stepniak DT, Bunnik EM, Kooy YMC, De Haan W, Drijfhout JW, Van Veelen PA, Koning F (2003) Characterization of cereal toxicity for celiac disease patients based on protein homology in grains. Gastroenterology 125:1105–1113

    Article  CAS  Google Scholar 

  47. McLachlan A, Cullis PG, Cornell HJ (2002) The use of extended amino acid motifs for focussing on toxic peptides in coeliac disease. J Biochem Mol Biol 6:319–324

    CAS  Google Scholar 

  48. Camarca A, Anderson RP, Mamone G, Fierro O, Facchiano A, Costantini S, Zanzi D, Sidney J, Auricchio S, Sette A, Troncone R, Gianfrani C (2009) Intestinal T cell responses to gluten peptides are largely heterogeneous: Implications for a peptide-based therapy in celiac disease. J Immunol 182:4158–4166

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Nestlé PTC Singen for supporting this research. In addition, we thank Jens Pfannstiel and Berit Würtz (University of Hohenheim, Service Unit Mass Spectrometry) for the LC–ESI–MS/MS measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lutz Fischer.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Compliance with ethics requirements

This article does not contain any studies with human or animal subjects.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berends, P., Merz, M., Kochjohann, A. et al. Sensory and antigenic properties of enzymatic wheat gluten hydrolysates produced in an enzyme membrane reactor in comparison with batch. Eur Food Res Technol 243, 807–816 (2017). https://doi.org/10.1007/s00217-016-2794-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-016-2794-x

Keywords

Navigation