Skip to main content
Log in

Glucoraphenin, sulforaphene, and antiproliferative capacity of radish sprouts in germinating and thermal processes

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

Glucoraphenin, the predominant glucosinolate in radish sprouts, is hydrolyzed by myrosinase to sulforaphene that is implicated to exert anticancerogenic effects. The effects of germination and subsequent cooking processes on the levels of glucoraphenin and its hydrolysis products were investigated in this research. HPLC analysis revealed that the levels of glucoraphenin and sulforaphene decreased with germination time. In agreement with the above results, the antiproliferation activity of radish sprouts extracts on human lung cancer cells was also found to decline gradually in line with the germination process. Furthermore, when we applied three traditional cooking treatments to radish sprouts, the glucoraphenin and sulforaphene were markedly decreased; while the antiproliferation activity of cooked radish sprouts was considerably decreased. This research showed that 3-day-old radish sprouts are an excellent source of bioactive compounds that could potentially benefit human health, while any cooking process appears to cause the devastation of beneficial attributes in radish sprouts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ambrosone CB, McCann SE, Freudenheim JL, Marshall JR, Zhang Y, Shields PG (2004) J Nutr 134:1134–1138

    CAS  Google Scholar 

  2. Joseph MA, Moysich KB, Freudenheim JL, Shiedlds PG, Bowman ED, Zhang Y, Marshall JR, Ambrosone CB (2004) Nut Cancer 50:206–213

    Article  CAS  Google Scholar 

  3. Neuhouser ML, Patterson RE, Thornquist MD, Omenn GS, King IB, Goodman GE (2003) Cancer EpidemBiomar 12:350–358

    CAS  Google Scholar 

  4. Voorips LE, Goldbohm RA, Verhoeven DT, van Poppel GA, Sturmans F, Hermus RJ, van den Brandt PA (2000) Cancer Causes Control 11(2):1010–1015

    Google Scholar 

  5. Nastruzzi C, Cortest R, Esposito E, Menegatti E, Leoni O, Iori L, Palmieri S (1996) J Agric Food Chem 44:1014–1021

    Article  CAS  Google Scholar 

  6. Vaughn SF, Berhow MA (2005) Ind Crops Prod 21:193–202

    Article  CAS  Google Scholar 

  7. Fenwick GR, Heaney RK (1983) Food Chem 11(4):249–271

    Article  CAS  Google Scholar 

  8. Liang H, Lai BT, Yuan QP (2008) J Nat Prod 71:1911–1914

    Article  CAS  Google Scholar 

  9. Zhang YS (2004) Res Fund Mol M 555:173–190

    Article  CAS  Google Scholar 

  10. Zhang YS, Tang L (2004) Acta Pharmacol Sin 28(9):1343–1354

    Article  Google Scholar 

  11. Ciska E, Honke J, Kozlowska H (2008) J Agric Food Chem 56:9087–9093

    Article  CAS  Google Scholar 

  12. Kim HJ, Chen F, Choi JH (2006) J Agric Food Chem 54:7263–7269

    Article  CAS  Google Scholar 

  13. Martinez-Villaluenga C, Penas E, Ciska E, Piskula MK, Kozlowska H, Vidal-Valverde C, Frias J (2010) Food Chem 120:710–716

    Article  CAS  Google Scholar 

  14. Yuan GF, Wang XP, Guo RF, Wang QM (2010) Food Chem 121:1014–1019

    Article  CAS  Google Scholar 

  15. Zhou CG, Zhu Y, Luo YB (2013) J Agric Food Chem 61:7552–7559

    Article  CAS  Google Scholar 

  16. Papi A, Orlandi M, Bartolini G, Barillari J, Iori R (2008) J Agric Food Chem 56:875–883

    Article  CAS  Google Scholar 

  17. Song D, Liang H, Kuang PQ, Tang P, Hu GF, Yuan QP (2013) J Agric Food Chem 61:5097–5102

    Article  CAS  Google Scholar 

  18. Zhang X, Liu HB, Jia JJ, Lv WH (2010) J Asian Nat Prod Res 2010:113–118

    Article  Google Scholar 

  19. Jones RB, Frisina CL, Winkler S, Imsic M, Tomkins RB (2012) Food Chem 123:237–242

    Article  Google Scholar 

  20. Wang GC, Farnham M, Jeffery EH (2012) J Agric Food Chem 60:6743–6748

    Article  CAS  Google Scholar 

  21. Rungapamestry V, Duncan A, Fuller Z, Ratcliffe B (2006) J Agric Food Chem 54:7628–7634

    Article  CAS  Google Scholar 

  22. Verkerk R, Dekker M (2004) J Agric Food Chem 52:7318–7323

    Article  CAS  Google Scholar 

  23. Kuang PQ, Song D, Lv XH, Zhao D, Liang H, Yuan QP (2013) Food Chem 136:309–315

    Article  CAS  Google Scholar 

  24. Clarke JD, Hsu A, Riedl K, Bella D, Schwartz SJ, Stevens JF, Ho E (2011) Pharmacol Res 64:456–463

    Article  CAS  Google Scholar 

  25. Li X, Kushad MM (2005) Plant Physiol Bioch 43:503–511

    Article  CAS  Google Scholar 

  26. Bradford MM (1976) Anal biochemistry 72:248–254

    Article  CAS  Google Scholar 

  27. Hanlon PR, Webber DM, Barnes DM (2007) J Agric Food Chem 55:6439–6446

    Article  CAS  Google Scholar 

  28. Frias J, Gulewicz P, Villaluenga CM, Penas E, Piskula MK, Kozlowska H, Ciska E, Gulewicz K, Valverde CV (2010) J Agric Food Chem 58:2331–2336

    Article  CAS  Google Scholar 

  29. Frias J, Gulewicz P, Villaluenga CM, Pilarski R, Blazquez E, Jimenez B, Gulewicz K, Valverde CV (2009) J Agric Food Chem 57:1319–1325

    Article  CAS  Google Scholar 

  30. Perez-Bzlibrea S, Moreno DA, Garcia-Viguera C (2010) J Food Sci 75:C673–C677

    Article  Google Scholar 

  31. Liang H, Li C, Yuan Q, Vriesekoop F (2007) J Agric Food Chem 55(20):8047–8053

    Article  CAS  Google Scholar 

  32. Martínez-Villaluenga C, Frías J, Gulewicz P, Gulewicz K, Vidal-Valerde C (2008) Food Chem Toxicol 46:1635–1644

    Article  Google Scholar 

  33. Zhang YS, Tang L, Gonzalez V (2003) Mol Cancer Ther 2:1045–1052

    CAS  Google Scholar 

  34. Vallejo F, Tomás-Barberán FA, García-Viguera C (2002) Eur Food Res Technol 215(4):310–316

    Article  CAS  Google Scholar 

  35. Cole RA (1980) J Agric Food Chem 31:549–557

    Article  CAS  Google Scholar 

  36. Petroski RJ, Tookey HL (1982) Phytochemistry 21:1903–1905

    Article  CAS  Google Scholar 

  37. Chin HW, Lindsay RC (1993) J Food Sci 58:835–839

    Article  CAS  Google Scholar 

  38. Kanda K, Tsuruta H (1995) Soil Sci Plant Nutr 41:321–328

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge financial support from the Beijing Natural Science Foundation (2162030), China Scholarship Council, the Fundamental Research Funds for the Central Universities (YS1407), and the National High Technology Research and Development Program of China (863 Program, Grant No. 2014AA021705).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Liang.

Ethics declarations

Conflict of interest

The research has no conflict of interest.

Compliance with ethics requirements

This article does not contain any studies with human or animal subjects.

Additional information

Ruimin Li and Dan Song have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, R., Song, D., Vriesekoop, F. et al. Glucoraphenin, sulforaphene, and antiproliferative capacity of radish sprouts in germinating and thermal processes. Eur Food Res Technol 243, 547–554 (2017). https://doi.org/10.1007/s00217-016-2764-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-016-2764-3

Keywords

Navigation