Skip to main content
Log in

Use of triacylglycerol profiles established by HPLC–UV and ELSD to predict cultivar and maturity of Tunisian olive oils

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

The usefulness of triacylglycerol (TAG) profiles established by high-performance liquid chromatography using both UV and evaporative light scattering (ELSD) detectors as a tool to discriminate between seven cultivars of Tunisian extra virgin olive oils (EVOOs) was evaluated in this work. Moreover, the discrimination of EVOOs from the cultivars Chemchali, Fouji and Zarrazi, characterized with different maturity indexes, was also studied. With both detectors, a total of 19 peaks, which were common to all the EVOOs studied, were observed. However, ELSD peaks, which provided a higher signal-to-noise ratio than the UV peaks, were selected to construct linear discriminant analysis models for cultivar and maturity index prediction. In all cases, an excellent resolution between all category pairs was achieved, which demonstrated that TAG profiles are a good marker of both cultivar and maturity index of EVOOs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ACN:

Acetonitrile

ELSD:

Evaporative light scattering detector

HPLC:

High-performance liquid chromatography

EVOO:

Extra virgin olive oil

LDA:

Linear discriminant analysis

MS:

Mass spectrometry

PN:

Partition number

TAG:

Triacylglycerol

References

  1. Baccouri O, Guerfel M, Baccouri B, Cerretani L, Bendini A, Lercker G, Zarrouk M, Daoud Ben Miled D (2008) Chemical composition and oxidative stability of Tunisian monovarietal virgin olive oils with regard to fruit ripening. Food Chem 109:743–754

    Article  CAS  Google Scholar 

  2. Issaoui M, Flamini G, Brahmi F, Dabbou S, Ben Hassine K, Taamali A, Chehab H, Ellouz M, Zarrouk M, Hammami M (2010) Effect of the growing area conditions on differentiation between Chemlali and Chétoui olive oils. Food Chem 119:220–225

    Article  CAS  Google Scholar 

  3. Baccouri O, Cerretani L, Bendini A, Caboni MF, Zarrouk M, Pirrone L, Daoud Ben Miled D (2007) Preliminary chemical characterization of Tunisian monovarietal virgin olive oils and comparison with Sicilian ones. Eur J Lipid Sci Technol 109:1208–1217

    Article  CAS  Google Scholar 

  4. Ben Youssef N, Zarrouk W, Carrasco-Pancorbo A, Ouni Y, Segura-Carretero A, Fernández-Gutiérrez A, Daoud D, Zarrouk M (2010) Effect of olive ripeness on chemical properties and phenolic composition of Chétoui virgin olive oil. J Sci Food Agric 90:199–204

    Article  CAS  Google Scholar 

  5. Vichi S, Lazzez A, Grati-Kamoun N, Caixach J (2012) Modifications in virgin olive oil glycerolipid fingerprint during olive ripening by MALDI-TOF MS analysis. LWT-Food Sci Technol 48:24–29

    Article  CAS  Google Scholar 

  6. Mailer RJ, Ayton J, Graham K (2011) The influence of growing region, cultivar and harvest timing on the diversity of Australian olive oil. J Am Oil Chem Soc 87:877–884

    Article  Google Scholar 

  7. Ollivier D, Artaud J, Pinatel C, Durbec JP, Guérère M (2006) Differentiation of French virgin olive oil RDOs by sensory characteristics, fatty acid and triacylglycerol compositions and chemometrics. Food Chem 97:382–393

    Article  CAS  Google Scholar 

  8. Krichene D, Allalout A, Mancebo-Campos V, Salvador MD, Zarrouk M, Fregapane G (2010) Stability of virgin olive oil and behaviour of its natural antioxidants under medium temperature accelerated storage conditions. Food Chem 121:171–177

    Article  CAS  Google Scholar 

  9. Gimeno E, Castellote AI, Lamuela-Raventos RM, De la Torre MC, Lopez-Sabater MC (2002) The effects of harvest and extraction methods on the antioxidant content (phenolics, α-tocopherol, and β-carotene) in virgin olive oil. Food Chem 78:207–211

    Article  CAS  Google Scholar 

  10. Dag A, Kerem Z, Yogev N, Zipori I, Lavee S, Ben-David E (2011) Influence of time of harvest and maturity index on olive oil yield and quality. Sci Hortic 127:358–366

    Article  CAS  Google Scholar 

  11. Salvador MD, Aranda F, Fregapane G (2001) Influence of fruit ripening on “Cornicabra” virgin olive oil quality. A study of four successive crop seasons. Food Chem 73:45–53

    Article  CAS  Google Scholar 

  12. Skevin D, Rade D, Strucelj D, Mokrovcak Z, Nederal S, Bencic D (2003) The influence of variety and harvest time on the bitterness and phenolic compounds of olive oil. Eur J Lipid Sci Technol 105:536–541

    Article  CAS  Google Scholar 

  13. Morelló JR, Romero MP, Motilva MJ (2006) Influence of seasonal conditions on the composition and quality parameters of monovarietal virgin olive oils. J Am Oil Chem Soc 83:683–690

    Article  Google Scholar 

  14. Gutiérrez F, Jimenez B, Ruiz A, Albi MA (1999) Effect of olive ripeness on the oxidative stability of virgin olive oil extracted from the varieties Picual and Hojiblanca and on the different components involved. J Agric Food Chem 47:121–127

    Article  Google Scholar 

  15. Kalua C, Allen MS, Bedgood DRJR, Bishop AG, Prenzler PD (2005) Discrimination of olive oils and fruits into cultivars and maturity stages based on phenolic and volatile compounds. J Agric Food Chem 53:8054–8062

    Article  CAS  Google Scholar 

  16. Cerretani L, Bendini A, Del Caro A, Piga A, Vacca V, Caboni MF, Gallina Toschi T (2006) Preliminary characterization of virgin olive oils obtained from different cultivars in Sardinia. Eur Food Res Technol 222:354–361

    Article  CAS  Google Scholar 

  17. Haddada FM, Manai H, Oueslati I, Daoud D, Sánchez J, Osorio E, Zarrouk M (2007) Fatty acid, triacylglycerol, and phytosterol composition in six Tunisian olive varieties. J Agric Food Chem 55:10941–10946

    Article  CAS  Google Scholar 

  18. Matos LC, Cunha SC, Amaral JS, Pereira JA, Andrade PB, Seabra RM, Oliveira BPP (2007) Chemometric characterization of three varietal olive oils (Cvs. Cobrançosa, Madural and Verdeal Transmontana) extracted from olives with different maturation indices. Food Chem 102:406–414

    Article  CAS  Google Scholar 

  19. Gómez-Rico A, Fregapane G, Salvador MD (2008) Effect of cultivar and ripening on minor components in Spanish olive fruits and their corresponding virgin olive oils. Food Res Int 41:433–440

    Article  Google Scholar 

  20. Oueslati I, Manai H, Haddada FM, Daoud D, Sánchez J, Osorio E, Zarrouk M (2009) Sterol, triterpenic dialcohol, and triacylglycerol compounds of extra virgin olive oils from some Tunisian varieties grown in the region of Tataouine. J Food Sci Technol 15:5–13

    CAS  Google Scholar 

  21. Yorulmaz A, Erinc H, Tekin A (2013) Changes in olive and olive oil characteristics during maturation. J Am Oil Chem Soc 90:647–658

    Article  CAS  Google Scholar 

  22. Sakouhi F, Herchi W, Sebei K, Absalon C, Kallel H, Boukhchina S (2011) Accumulation of total lipids, fatty acids and triacylglycerols in developing fruits of Olea europaea L. Sci Hortic 132:7–11

    Article  CAS  Google Scholar 

  23. Bengana M, Bakhouche A, Lozano-Sánchez J, Amir Y, Youyou A, Segura-Cerretero A, Fernandez-Gutiérrez A (2013) Influence of olive ripeness on chemical properties and phenolic composition of Chemlal extra-virgin olive oil. Food Res Int 54:1868–1875

    Article  CAS  Google Scholar 

  24. Fuentes de Mendoza M, De Miguel Gordillo C, Marín Expóxito J, Sánchez Casas J, Martínez Cano M, Martín Vertedor D, Franco Baltasar MN (2013) Chemical composition of virgin olive oils according to the ripening in olives. Food Chem 141:2575–2581

    Article  CAS  Google Scholar 

  25. Nagy K, Bongiorno D, Avellone G, Agozzino P, Ceraulo L, Vékey K (2005) High performance liquid chromatography-mass spectrometry based chemometric characterisation of olive oils. J Chromatogr A 1078:90–97

    Article  CAS  Google Scholar 

  26. Boskou D (1996) Olive oil chemistry and technology. AOCS Press, Champaign

    Google Scholar 

  27. Lerma-García MJ, Lusardi R, Chiavaro E, Cerretani L, Bendini A, Ramis-Ramos G, Simó-Alfonso EF (2011) Use of triacylglycerol profiles established by high performance liquid chromatography with ultraviolet-visible detection to predict the botanical origin of vegetable oils. J Chromatogr A 1218:7521–7527

    Article  Google Scholar 

  28. Ruiz-Samblás C, Cuadros-Rodríguez L, González-Casado A, Rodríguez García FP, De la Mata-Espinosa P, Bosque-Sendra JM (2011) Multivariate analysis of HT/GC-(IT) MS chromatographic profiles of triacylglycerol for classification of olive oil varieties. Anal Bioanal Chem 399:2093–2103

    Article  Google Scholar 

  29. Rombaut R, De Clercq N, Foubert I, Dewettinck K (2009) Triacylglycerol analysis of fats and oils by evaporative light scattering detection. J Am Oil Chem Soc 86:19–25

    Article  CAS  Google Scholar 

  30. Aparicio R, Aparicio-Ruíz R (2000) Authentication of vegetable oils by chromatographic techniques. J Chromatogr A 881:93–104

    Article  CAS  Google Scholar 

  31. Cunha SC, Oliveira MBPP (2006) Discrimination of vegetable oils by triacylglycerols evaluation of profile using HPLC/ELSD. Food Chem 95:518–524

    Article  CAS  Google Scholar 

  32. Vandeginste BGM, Massart DL, Buydens LMC, De Jong S, Lewis J, Smeyers-Verbeke J (1998) Data handling in science and technology, part B, 18th edn. Elsevier, Amsterdam, p 237

    Google Scholar 

  33. Ruíz-Gutiérrez V, Barron LJ (1995) Methods for the analysis of triacylglycerols. J Chromatogr B 671:133–168

    Article  Google Scholar 

  34. Sandra P, Medvedovici A, Zhao Y, David F (2002) Characterization of triglycerides in vegetable oils by silver-ion packed-column supercritical fluid chromatography coupled to mass spectroscopy with atmospheric pressure chemical ionization and coordination ion spray. J Chromatogr A 974:231–241

    Article  CAS  Google Scholar 

  35. Morera Pons S, Castellote Bargallo AI, Lopez Sabater MC (1998) Analysis of human milk triacylglycerols by high-performance liquid chromatography with light-scattering detection. J Chromatogr A 823:475–482

    Article  CAS  Google Scholar 

  36. Mengerink Y, Peters R, de Koster CG, Van der Wal SJ, Claessens HA, Cramers CA (2001) Separation and quantification of the linear and cyclic structures of polyamide-6 at the critical point of adsorption. J Chromatogr A 914:131–145

    Article  CAS  Google Scholar 

  37. Heron S, Maloumbi MG, Dreux M, Verette E, Tchapla A (2007) Method development for a quantitative analysis performed without any standard using an evaporative light-scattering detector. J Chromatogr A 1161:152–156

    Article  CAS  Google Scholar 

  38. Harwood JL, Page RA (1994) Biochemistry of oil synthesis. In: Murphy DJ (ed) Designer oil crops. VCH, Weinheim, pp 165–194

    Google Scholar 

  39. Siouffi AM (2000) Chapter 1: HPLC. In: Nollet ML (ed) Food analysis by HPLC. Marcel Dekker Inc., New York, pp 1–54

    Google Scholar 

Download references

Acknowledgments

Project CTQ2014-52765-R (MINECO of Spain and FEDER funds). M. Vergara-Barberán thanks the MINECO for an FPU grant for PhD studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Jesús Lerma-García.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Compliance with ethics requirements

This article does not contain any studies with human or animal subjects.

Additional information

Marwa Abdallah and María Vergara-Barberán have contributed equally to this work, and they should be considered co-first authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 17 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdallah, M., Vergara-Barberán, M., Lerma-García, M.J. et al. Use of triacylglycerol profiles established by HPLC–UV and ELSD to predict cultivar and maturity of Tunisian olive oils. Eur Food Res Technol 242, 1607–1619 (2016). https://doi.org/10.1007/s00217-016-2660-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-016-2660-x

Keywords

Navigation