Skip to main content
Log in

Improved wine yeasts by direct mating and selection under stressful fermentative conditions

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

Hybridization of yeasts allows whole-genome modifications that can be exploited to obtain global improvements in industrial traits, such as those involved in the winemaking industry. In our work we applied direct mating to achieve the construction of hybrids and we subsequently applied these hybrids in fermentation trials under stressful conditions, in order to select hybrid strains with improved technological traits. Five hybrids, obtained from six parental strains by direct spore conjugation, were validated through PCR amplification of highly variable minisatellite-containing genes; the validation phase also revealed three meiotic derivative strains, characterized by contracted number of repeats. Analysis of the mating-type locus in the homozygous spore progeny of parental strains provided useful insights into the understanding of hybridization yields and unveiled some irregularities in yeast autodiploidization mechanism. The fermentative trials were followed by chemical analysis; afterwards principal component analysis allowed the metabolic footprinting of wine yeasts and the selection of the two best industrial candidates, which display superior phenotypes in fermentative fitness and secondary metabolite production, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bisson LF (1999) Stuck and sluggish fermentations. Am J Enol Vitic 50:107–119

    CAS  Google Scholar 

  2. Monteiro FF, Trousdale EK, Bisson LF (1989) Ethyl carbamate formation in wine: use of radioactively labeled precursors to demonstrate the involvement of urea. Am J Enol Vitic 40:1–8

    CAS  Google Scholar 

  3. Bell SJ, Henschke PA (2005) Implications of nitrogen nutrition for grapes, fermentation and wine. Aust J Grape Wine Res 11:242–295

    Article  CAS  Google Scholar 

  4. Lehtonen P (1996) Determination of amines and amino acids in wine—a review. Am J Enol Vitic 47:127–133

    CAS  Google Scholar 

  5. Da Silva T, Albertin W, Dillmann C, Bely M, la Guerche S, Giraud C, Huet S, Sicard D, Masneuf-Pomarede I, de Vienne D, Marullo P (2015) Hybridization within Saccharomyces genus results in homoeostasis and phenotypic novelty in winemaking conditions. PLoS One 10:e0123834

    Article  Google Scholar 

  6. Pretorius IS (2000) Tailoring wine yeast for the new millennium: novel approaches to the ancient art of winemaking. Yeast 16:675–729

    Article  CAS  Google Scholar 

  7. Santos CNS, Stephanopoulos G (2008) Combinatorial engineering of microbes for optimizing cellular phenotype. Curr Opin Chem Biol 12:168–176

    Article  CAS  Google Scholar 

  8. Marullo P, Bely M, Masneuf-Pomarede I, Aigle M, Dubourdieu D (2004) Inheritable nature of enological quantitative traits is demonstrated by meiotic segregation of industrial wine yeast strains. FEMS Yeast Res 4:711–719

    Article  CAS  Google Scholar 

  9. Lander E, Schork N (1994) Genetic dissection of complex traits. Science 265:2037–2048

    Article  CAS  Google Scholar 

  10. Steinmetz LM, Sinha H, Richards DR, Spiegelman JI, Oefner PJ, McCusker JH, Davis RW (2002) Dissecting the architecture of a quantitative trait locus in yeast. Nature 416:326–330

    Article  CAS  Google Scholar 

  11. Winge Ö, Laustsen O (1938) Artificial species hybridization in yeast. Comptes Rendus des Travaux du Laboratoire Carlsberg, Série Physiologique 22:235–245

    Google Scholar 

  12. Steensels J, Snoek T, Meersman E, Nicolino MP, Voordeckers K, Verstrepen KJ (2014) Improving industrial yeast strains: exploiting natural and artificial diversity. FEMS Microbiol Rev 38:947–995

    Article  CAS  Google Scholar 

  13. Bellon JR, Eglinton JM, Siebert TE, Pollnitz AP, Rose L, de Barros Lopes M, Chambers PJ (2011) Newly generated interspecific wine yeast hybrids introduce flavour and aroma diversity to wines. Appl Microbiol Biotechnol 91:603–612

    Article  CAS  Google Scholar 

  14. Oda Y, Ouchi K (1990) Hybridization of Bakers’ yeast by the rare-mating method to improve leavening ability in dough. Enzyme Microb Technol 12:989–993

    Article  CAS  Google Scholar 

  15. Nakazawa N, Okawa K, Sato T, Enei H, Harashima S (1999) Mass mating method in combination with G418- and aureobasidin A-resistance markers for efficient selection of hybrids from homothallic strains in Saccharomyces cerevisiae. J Biosci Bioeng 88:468–471

    Article  CAS  Google Scholar 

  16. Hammond JRM, Eckersley KW (1984) Fermentation properties of brewing yeast with killer character. J Inst Brew 90:167–177

    Article  CAS  Google Scholar 

  17. Javadekar VS, SivaRaman H, Gokhale DV (1995) Industrial yeast strain improvement: construction of a highly flocculent yeast with a killer character by protoplast fusion. J Ind Microbiol 15:94–102

    Article  CAS  Google Scholar 

  18. Romano P, Soli MG, Suzzi G, Grazia L, Zambonelli C (1985) Improvement of a wine Saccharomyces cerevisiae strain by a breeding program. Appl Environ Microbiol 50:1064–1067

    CAS  Google Scholar 

  19. Steensels J, Meersman E, Snoek T, Saels V, Verstrepen KJ (2014) Large-scale selection and breeding to generate industrial yeasts with superior aroma production. Appl Environ Microbiol 80:6965–6975

    Article  Google Scholar 

  20. Querol A (2003) Adaptive evolution of wine yeast. Int J Food Microbiol 86:3–10

    Article  CAS  Google Scholar 

  21. Birchler JA, Yao H, Chudalayandi S (2006) Unraveling the genetic basis of hybrid vigor. Proc Natl Acad Sci USA 103:12957–12958

    Article  CAS  Google Scholar 

  22. Diezmann S, Dietrich FS (2009) Saccharomyces cerevisiae: population divergence and resistance to oxidative stress in clinical, domesticated and wild isolates. PLoS One 4:e5317

    Article  Google Scholar 

  23. Borneman AR, Desany BA, Riches D, Affourtit JP, Forgan AH, Pretorius IS, Egholm M, Chambers PJ (2011) Whole-genome comparison reveals novel genetic elements that characterize the genome of industrial strains of Saccharomyces cerevisiae. PLoS Genet 7:e1001287

    Article  CAS  Google Scholar 

  24. Giudici P, Solieri L, Pulvirenti AM, Cassanelli S (2005) Strategies and perspectives for genetic improvement of wine yeasts. Appl Microbiol Biotechnol 66:622–628

    Article  CAS  Google Scholar 

  25. De Vero L, Giudici P (2011) Selection of yeast with impaired reduction of sulphates and sulphites in wine production without SO2. Ind Delle Bevande 234:14–22

    Google Scholar 

  26. Mezzetti F, De Vero L, Giudici P (2014) Evolved Saccharomyces cerevisiae wine strains with enhanced glutathione production obtained by an evolution-based strategy. FEMS Yeast Res 14:977–987

    Article  CAS  Google Scholar 

  27. Gobbi M, De Vero L, Solieri L, Comitini F, Oro L, Giudici P, Ciani M (2014) Fermentative aptitude of non-Saccharomyces wine yeast for reduction in the ethanol content in wine. Eur Food Res Technol 239:41–48

    CAS  Google Scholar 

  28. Solieri L, Verspohl A, Bonciani T, Caggia C, Giudici P (2015) Fast method for identifying inter- and intra- species Saccharomyces hybrids in extensive genetic improvement programs based on yeast breeding. J Appl Microbiol 119:149–161

    Article  CAS  Google Scholar 

  29. Johnston JR, Baccari C, Mortimer RK (2000) Genotypic characterization of strains of commercial wine yeasts by tetrad analysis. Res Microbiol 151:583–590

    Article  CAS  Google Scholar 

  30. Solieri L, Antúnez O, Pérez-Ortín JE, Barrio E, Giudici P (2008) Mitochondrial inheritance and fermentative: oxidative balance in hybrids between Saccharomyces cerevisiae and Saccharomyces uvarum. Yeast 25:485–500

    Article  CAS  Google Scholar 

  31. Huxley C, Green ED, Dunham I (1990) Rapid assessment of S. cerevisiae mating type by PCR. Trends Genet 6:236

    Article  CAS  Google Scholar 

  32. Giudici P, Zambonelli C, Kunkee RE (1993) Increased production of n-propanol in wine by yeast strains having an impaired ability to form hydrogen sulfide. Am J Enol Vitic 44:17–21

    Google Scholar 

  33. Mortimer RK, Romano P, Suzzi G, Polsinelli M (1994) Genome renewal: a new phenomenon revealed from a genetic study of 43 strains of Saccharomyces cerevisiae derived from natural fermentation of grape musts. Yeast 10:1543–1552

    Article  CAS  Google Scholar 

  34. Sipiczki M (2010) Diversity, variability and fast adaptive evolution of the wine yeast (Saccharomyces cerevisiae) genome—a review. Ann Microbiol 61:85–93

    Article  Google Scholar 

  35. Herskowitz I (1988) Life cycle of the budding yeast Saccharomyces cerevisiae. Microbiol Rev 52:536–553

    CAS  Google Scholar 

  36. Garcia Sanchez R, Solodovnikova N, Wendland J (2012) Breeding of lager yeast with Saccharomyces cerevisiae improves stress resistance and fermentation performance. Yeast 29:343–355

    Article  Google Scholar 

  37. Klar AJ, Fogel S (1977) The action of homothallism genes in Saccharomyces diploids during vegetative growth and the equivalence of hma and HMα loci functions. Genetics 85:407–416

    CAS  Google Scholar 

  38. Verstrepen KJ, Jansen A, Lewitter F, Fink GR (2005) Intragenic tandem repeats generate functional variability. Nat Genet 37:986–990

    Article  CAS  Google Scholar 

  39. Li Y-C, Korol AB, Fahima T, Nevo E (2004) Microsatellites within genes: structure, function, and evolution. Mol Biol Evol 21:991–1007

    Article  CAS  Google Scholar 

  40. Contreras A, Hidalgo C, Henschke PA, Chambers PJ, Curtin C, Varela C (2014) Evaluation of non-Saccharomyces yeasts for the reduction of alcohol content in wine. Appl Environ Microbiol 80:1670–1678

    Article  CAS  Google Scholar 

  41. Kutyna DR, Varela C, Henschke PA, Chambers PJ, Stanley GA (2010) Microbiological approaches to lowering ethanol concentration in wine. Trends Food Sci Technol 21:293–302

    Article  CAS  Google Scholar 

  42. Ciani M, Comitini F (2006) Influence of temperature and oxygen concentration on the fermentation behaviour of Candida stellata in Mixed Fermentation with Saccharomyces cerevisiae. World J Microbiol Biotechnol 22:619–623

    Article  CAS  Google Scholar 

  43. Ferreira V, Lopez R, Cacho JF (2000) Quantitative determination of the odorants of young red wines from different grape varieties. J Sci Food Agric 80:1659–1667

    Article  CAS  Google Scholar 

  44. Remize F, Andrieu E, Dequin S (2000) Engineering of the pyruvate dehydrogenase bypass in Saccharomyces cerevisiae: role of the cytosolic Mg(2+) and mitochondrial K(+) acetaldehyde dehydrogenases Ald6p and Ald4p in acetate formation during alcoholic fermentation. Appl Environ Microbiol 66:3151–3159

    Article  CAS  Google Scholar 

  45. Benito Á, Calderón F, Palomero F, Benito S (2015) Combine use of selected Schizosaccharomyces pombe and Lachancea thermotolerans yeast strains as an alternative to the traditional malolactic fermentation in red wine production. Molecules 20:9510–9523

    Article  CAS  Google Scholar 

  46. Lippman ZB, Zamir D (2007) Heterosis: revisiting the magic. Trends Genet 23:60–66

    Article  CAS  Google Scholar 

  47. Marullo P, Bely M, Masneuf-Pomarède I, Pons M, Aigle M, Dubourdieu D (2006) Breeding strategies for combining fermentative qualities and reducing off-flavor production in a wine yeast model. FEMS Yeast Res 6:268–279

    Article  CAS  Google Scholar 

  48. Dettman J, Sirjusingh C, Kohn L, Anderson J (2007) Incipient speciation by divergent adaptation and antagonistic epistasis in yeast. Nature 447:585–588

    Article  CAS  Google Scholar 

  49. Zambonelli C, Passarelli P, Rainieri S, Bertolini L, Levi V, Emilia R, Agrarie I, Soða S, Castellari L (1997) Technological properties and temperature response of interspecific Saccharomyces Hybrids. J Sci Food Agric 50:7–12

    Article  Google Scholar 

  50. Wang Q-M, Liu W-Q, Liti G, Wang S-A, Bai F-Y (2012) Surprisingly diverged populations of Saccharomyces cerevisiae in natural environments remote from human activity. Mol Ecol 21:5404–5417

    Article  Google Scholar 

  51. Magwene PM (2014) Revisiting Mortimer’s genome renewal hypothesis: heterozygosity, homothallism, and the potential for adaptation in yeast. Adv Exp Med Biol 781:37–48

    Article  Google Scholar 

  52. Sipiczki M, Romano P, Lipani G, Miklos I, Antunovics Z (2001) Analysis of yeasts derived from natural fermentation in a Tokaj winery. Antonie Van Leeuwenhoek 79:97–105

    Article  CAS  Google Scholar 

  53. Sipiczki M, Romano P, Capece A, Paraggio M (2004) Genetic segregation of natural Saccharomyces cerevisiae strains derived from spontaneous fermentation of Aglianico wine. J Appl Microbiol 96:1169–1175

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Federico Lemmetti for its technical assistance for HPLC analysis and to AEB group for providing the commercial strains used in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tommaso Bonciani.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Compliance with ethics requirements

This article does not contain any studies with human or animal subjects.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bonciani, T., Solieri, L., De Vero, L. et al. Improved wine yeasts by direct mating and selection under stressful fermentative conditions. Eur Food Res Technol 242, 899–910 (2016). https://doi.org/10.1007/s00217-015-2596-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-015-2596-6

Keywords

Navigation