Skip to main content
Log in

Headspace fingerprinting and sensory evaluation to discriminate between traditional and alternative pasteurization of watermelon juice

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

The watermelon juice was processed by thermal and large-scale alternative pasteurization technologies, pulsed electric fields (PEF) and high pressure processing (HPP). The watermelon juice was compared and evaluated immediately after the treatment as well as a function of shelf-life. As a basis for the comparison, microbial inactivation was chosen. The watermelon juice quality evaluation was performed by a multivariate quality comparison (headspace fingerprinting), studying volatile fractions of the juice. Control and pasteurized juice was evaluated in terms of sensory at the beginning and the end of the shelf-life. Most of the selected markers in control juice were lower in concentration compared to processed classes. Majority of the compounds detected in higher concentration after processing were C6–C9 carbonyls. Their formation is linked to oxidation of fatty acids. Few degradation products of lycopene have been observed in PEF and HPP class. Compounds selected in higher concentration in thermal class were products linked to the Maillard reaction and Strecker degradation products. All compounds detected in lower concentration in thermal class at day-12 compared to PEF and HPP were linked to lycopene degradation. According to the sensory evaluation, a clear differentiation of control from processed samples as well as among processed samples only after the treatment and at the end of the shelf-life was possible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Silva FVM, Gibbs PA, Nunez H, Almonacid S, Simpson R, Batt CA, Tortorello ML (2014) Thermal processes|pasteurization. In: Batt CA, Tortorello ML (eds) Encyclopedia of food microbiology, 2nd edn. Academic Press, Oxford, pp 577–595

  2. Yeom HW, Streaker CB, Zhang QH, Min DB (2000) Effects of pulsed electric fields on the quality of orange juice and comparison with heat pasteurization. J Agric Food Chem 48(10):4597–4605

    Article  CAS  Google Scholar 

  3. Choi LH, Nielsen SS (2005) The effects of thermal and nonthermal processing methods on apple cider quality and consumer acceptability. J Food Qual 28(1):13–29

    Article  Google Scholar 

  4. van Boekel M, Fogliano V, Pellegrini N, Stanton C, Scholz G, Lalljie S, Somoza V, Knorr D, Jasti PR, Eisenbrand G (2010) A review on the beneficial aspects of food processing. Mol Nutr Food Res 54(9):1215–1247

    Article  Google Scholar 

  5. Knorr D (1999) Novel approaches in food-processing technology: new technologies for preserving foods and modifying function. Curr Opin Biotechnol 10(5):485–491

    Article  CAS  Google Scholar 

  6. Clark AV, Rejimbal TR, Gomez CM (1994) Ultra-high pressure homogenization of unpasteurized juice. Google Patents

  7. Dede S, Alpas H, Bayindirli A (2007) High hydrostatic pressure treatment and storage of carrot and tomato juices: antioxidant activity and microbial safety. J Sci Food Agric 87(5):773–782

    Article  CAS  Google Scholar 

  8. Morales-de la Pena M, Salvia-Trujillo L, Rojas-Graü MA, Martin-Belloso O (2011) Changes on phenolic and carotenoid composition of high intensity pulsed electric field and thermally treated fruit juice-soymilk beverages during refrigerated storage. Food Chem 129(3):982–990

    Article  CAS  Google Scholar 

  9. Zenker M, Heinz V, Knorr D (2003) Application of ultrasound-assisted thermal processing for preservation and quality retention of liquid foods. J Food Prot 66(9):1642–1649

    CAS  Google Scholar 

  10. Vasantha Rupasinghe HP, Yu LJ (2012) Emerging preservation methods for fruit juices and beverages. In: El-Samragy Y (ed) Food additive. In-Tech. doi:10.5772/32148. http://www.intechopen.com/books/food-additive/emerging-preservationmethods-3-for-fruit-juices-and-beverages (ISBN 978-953-51-0067-6)

  11. Giovannucci E (2002) A review of epidemiologic studies of tomatoes, lycopene, and prostate cancer. Exp Biol Med (Maywood) 227(10):852–859

    CAS  Google Scholar 

  12. Edwards AJ, Vinyard BT, Wiley ER, Brown ED, Collins JK, Perkins-Veazie P, Baker RA, Clevidence BA (2003) Consumption of watermelon juice increases plasma concentrations of lycopene and β-carotene in humans. J Nutr 133(4):1043–1050

    CAS  Google Scholar 

  13. Knorr D, Geulen M, Grahl T, Sitzmann W (1994) Food application of high electric field pulses. Trends Food Sci Technol 5(3):71–75

    Article  CAS  Google Scholar 

  14. Toepfl S, Mathys A, Heinz V, Knorr D (2006) Review: Potential of high hydrostatic pressure and pulsed electric fields for energy efficient and environmentally friendly food processing. Food Rev Int 22(4):405–423

    Article  CAS  Google Scholar 

  15. Aguilar-Rosas SF, Ballinas-Casarrubias ML, Nevarez-Moorillon GV, Martin-Belloso O, Ortega-Rivas E (2007) Thermal and pulsed electric fields pasteurization of apple juice: effects on physicochemical properties and flavour compounds. J Food Eng 83(1):41–46

    Article  CAS  Google Scholar 

  16. Toepfl S, Heinz V, Knorr D (2007) High intensity pulsed electric fields applied for food preservation. Chem Eng Process 46(6):537–546

    Article  CAS  Google Scholar 

  17. Heinz V, Buckow R (2009) Food preservation by high pressure. Journal für Verbraucherschutz und Lebensmittelsicherheit 5(1):73–81

    Article  Google Scholar 

  18. Grauwet T, Vervoort L, Colle I, Van Loey A, Hendrickx M (2014) From fingerprinting to kinetics in evaluating food quality changes. Trends Biotechnol 32(3):125–131. doi:10.1016/j.tibtech.2014.01.002

    Article  CAS  Google Scholar 

  19. Mosqueda-Melgar J, Raybaudi-Massilia RM, Martin-Belloso O (2007) Influence of treatment time and pulse frequency on Salmonella Enteritidis, Escherichia coli and Listeria monocytogenes populations inoculated in melon and watermelon juices treated by pulsed electric fields. Int J Food Microbiol 117(2):192–200

    Article  CAS  Google Scholar 

  20. Mosqueda-Melgar J, Raybaudi-Massilia RM, Martin-Belloso O (2008) Combination of high-intensity pulsed electric fields with natural antimicrobials to inactivate pathogenic microorganisms and extend the shelf-life of melon and watermelon juices. Food Microbiol 25(3):479–491

    Article  CAS  Google Scholar 

  21. Oms-Oliu G, Odriozola-Serrano I, Soliva-Fortuny R, Martin-Belloso O (2009) Effects of high-intensity pulsed electric field processing conditions on lycopene, vitamin C and antioxidant capacity of watermelon juice. Food Chem 115(4):1312–1319

    Article  CAS  Google Scholar 

  22. Aguilo-Aguayo I, Montero-Calderon M, Soliva-Fortuny R, Martin-Belloso O (2010) Changes on flavor compounds throughout cold storage of watermelon juice processed by high-intensity pulsed electric fields or heat. J Food Eng 100(1):43–49

    Article  CAS  Google Scholar 

  23. Aguilo-Aguayo I, Soliva-Fortuny R, Martin-Belloso O (2010) Color and viscosity of watermelon juice treated by high-intensity pulsed electric fields or heat. Innov Food Sci Emerg Technol 11(2):299–305

    Article  CAS  Google Scholar 

  24. Aguilo-Aguayo I, Soliva-Fortuny R, Martin-Belloso O (2009) Avoiding non-enzymatic browning by high-intensity pulsed electric fields in strawberry, tomato and watermelon juices. J Food Eng 92(1):37–43

    Article  CAS  Google Scholar 

  25. Liu Y, Zhao XY, Zou L, Hu XS (2013) Effect of high hydrostatic pressure on overall quality parameters of watermelon juice. Food Sci Technol Int 19(3):197–207. doi:10.1177/1082013212442194

    Article  CAS  Google Scholar 

  26. Zhang C, Trierweiler B, Li W, Butz P, Xu Y, Rüfer CE, Ma Y, Zhao X (2011) Comparison of thermal, ultraviolet-c, and high pressure treatments on quality parameters of watermelon juice. Food Chem 126(1):254–260

    Article  CAS  Google Scholar 

  27. Kessler HG (2006) Lebensmittel- und Bioverfahrenstechnik -Molkereitechnologie. Verlag A Kessler, München

    Google Scholar 

  28. Vervoort L, Grauwet T, Kebede BT, Van der Plancken I, Timmermans R, Hendrickx M, Van Loey A (2012) Headspace fingerprinting as an untargeted approach to compare novel and traditional processing technologies: a case-study on orange juice pasteurisation. Food Chem 134(4):2303–2312

    Article  CAS  Google Scholar 

  29. Kebede BT, Grauwet T, Tabilo-Munizaga G, Palmers S, Vervoort L, Hendrickx M, Van Loey A (2013) Headspace components that discriminate between thermal and high pressure high temperature treated green vegetables: identification and linkage to possible process-induced chemical changes. Food Chem 141(3):1603–1613

    Article  CAS  Google Scholar 

  30. Oms-Oliu G, Odriozola-Serrano I, Martin-Belloso O (2013) Metabolomics for assessing safety and quality of plant-derived food. Food Res Int 54(1):1172–1183

    Article  CAS  Google Scholar 

  31. NACMCF NACoMCfF (2006) Requisite scientific parameters for establishing the equivalence of alternative methods of pasteurization. J Food Prot 69(5):1190–1216

    Google Scholar 

  32. FDA (2004) Guidance for industry: juice HACCP hazards and controls guidance first edition; final guidance. US Department of Health and Human Services, Food and Drug Administration, Center for Food Safety and Applied Nutrition (CFSAN) http://www.fdagov/Food/GuidanceRegulation/GuidanceDocumentsRegulatoryInformation/Juice/ucm072557.htm

  33. Del Rosariao BA, Beuchat LR (1995) Survival and growth of enterohemorrhagic Escherichia coli O157:H7 in cantaloupe and watermelon. J Food Prot 58:105–107

    Google Scholar 

  34. Penteado AL, Leitao MFF (2004) Growth of Listeria monocytogenes in melon, watermelon and papaya pulps. Int J Food Microbiol 92(1):89–94

    Article  CAS  Google Scholar 

  35. Grahl T, Märkl H (1996) Killing of microorganisms by pulsed electric fields. Appl Microbiol Biotechnol 45(1):148–157

    Article  CAS  Google Scholar 

  36. Sale AJH, Hamilton WA (1967) Effects of high electric fields on microorganisms: I. Killing of bacteria and yeasts. Biochim Biophy Acta-Gen Subj 148(3):781–788

    Article  Google Scholar 

  37. Zimmermann U, Pilwat G, Riemann F (1974) Dielectric breakdown of cell membranes. Biophys J 14(11):881–899

    Article  CAS  Google Scholar 

  38. Min S, Jin ZT, Min SK, Yeom H, Zhang QH (2003) Commercial-scale pulsed electric field processing of orange juice. J Food Sci 68(4):1265–1271

    Article  CAS  Google Scholar 

  39. Min S, Jin ZT, Zhang QH (2003) Commercial scale pulsed electric field processing of tomato juice. J Agric Food Chem 51(11):3338–3344

    Article  CAS  Google Scholar 

  40. Toepfl S (2011) Pulsed electric field food treatment—scale up from lab to industrial scale. Procedia Food Sci 1:776–779

    Article  Google Scholar 

  41. Saldana G, Puertolas E, Monfort S, Raso J, Alvarez I (2011) Defining treatment conditions for pulsed electric field pasteurization of apple juice. Int J Food Microbiol 151(1):29–35

    Article  CAS  Google Scholar 

  42. Farkas DF, Hoover DG (2000) High pressure processing (kinetics of microbial inactivation for alternative food processing technologies). J Food Sci 65(8):S47

    Article  Google Scholar 

  43. Farr D (1990) High pressure technology in the food industry. Trends Food Sci Technol 1:14–16

    Article  Google Scholar 

  44. Simpson RK, Gilmour A (1997) The effect of high hydrostatic pressure on the activity of intracellular enzymes of Listeria monocytogenes. Lett Appl Microbiol 25(1):48–53

    Article  CAS  Google Scholar 

  45. Tonello-Samson C (2014) Advances in high pressure processing: case studies. In: IFT Annual Meeting & Food Expo, New Orleans, LA, USA

  46. Tonello-Samson C (2013) Personal communication. Hiperbaric, Spain

    Google Scholar 

  47. Yajima I, Sakakibara H, Ide J, Yanai T, Hayashi K (1985) Volatile flavor components of watermelon (Citrullus vulgaris). Agric Biol Chem 49(11):3145–3150

    Article  CAS  Google Scholar 

  48. Beaulieu JC, Lea JM (2006) Characterization and semiquantitative analysis of volatiles in seedless watermelon varieties using solid-phase microextraction. J Agric Food Chem 54(20):7789–7793

    Article  CAS  Google Scholar 

  49. Verzera A, Dima G, Tripodi G, Ziino M, Lanza CM, Mazzaglia A (2011) Fast quantitative determination of aroma volatile constituents in melon fruits by headspace-solid-phase microextraction and gas chromatography-mass spectrometry. Food Anal Methods 4(2):141–149

    Article  Google Scholar 

  50. Christensen LP, Edelenbos M, Kreutzmann S (2007) Fruits and vegetables of moderate climate. In: Berger PDRG (ed) Flavours and fragrances, chemistry, bioprocessing and sustainability. Springer, Berlin, pp 135–187. ISBN 978-3-540-49339-6

    Chapter  Google Scholar 

  51. Aganovic K, Grauwet T, Kebede BT, Toepfl S, Heinz V, Hendrickx M, Van Loey A (2014) Impact of different large scale pasteurisation technologies and refrigerated storage on the headspace fingerprint of tomato juice. Innov Food Sci Emerg Technol 26:431–444

    Article  CAS  Google Scholar 

  52. Kemp TR (1975) Identification of some volatile compounds from Citrullus vulgaris. Phytochemistry 14(12):2637–2638

    Article  CAS  Google Scholar 

  53. Pino JA, Marbot R, Aguero J (2003) Volatile components of watermelon (Citrullus Ianatus [Thunb.] Matsum. et Nakai) fruit. J Essent Oil Res 15(6):379–380

    Article  CAS  Google Scholar 

  54. Teranishi R, Wick E, Hornstein I, Takeoka G (1999) Flavor chemistry of vegetables. Flavor chemistry. Springer, US, pp 287–304

    Chapter  Google Scholar 

  55. Liu C, Zhang H, Dai Z, Liu X, Liu Y, Deng X, Chen F, Xu J (2012) Volatile chemical and carotenoid profiles in watermelons [Citrullus vulgaris (Thunb.) Schrad (Cucurbitaceae)] with different flesh colors. Food Sci Biotechnol 21(2):531–541

    Article  CAS  Google Scholar 

  56. Xisto ALRP, Boas EVdBV, Nunes EE, Federal BMVB, Guerreiro MC (2012) Volatile profile and physical, chemical, and biochemical changes in fresh cut watermelon during storage. Food Sci Technol (Campinas) 32:173–178

    Article  Google Scholar 

  57. Amaro AL, Beaulieu JC, Grimm CC, Stein RE, Almeida DPF (2012) Effect of oxygen on aroma volatiles and quality of fresh-cut cantaloupe and honeydew melons. Food Chem 130(1):49–57

    Article  CAS  Google Scholar 

  58. Luning PA, Carey AT, Roozen JP, Wichers HJ (1995) Characterization and occurrence of lipoxygenase in bell peppers at different ripening stages in relation to the formation of volatile flavor compounds. J Agric Food Chem 43(6):1493–1500

    Article  CAS  Google Scholar 

  59. Hatanaka A (1993) The biogeneration of green odour by green leaves. Phytochemistry 34(5):1201–1218

    Article  CAS  Google Scholar 

  60. Chi-Tang H, Qinyun C (1994) Lipids in food flavors, In: Lipids in Food Flavors, vol 558. American Chemical Society, Washington, DC, pp 2–14

  61. Schieberle P, Grosch W (1981) Model experiments about the formation of volatile carbonyl compounds. J Am Oil Chem Soc 58(5):602–607

    Article  CAS  Google Scholar 

  62. Anthon GE, Barrett DM (2003) Thermal inactivation of lipoxygenase and hydroperoxytrienoic acid lyase in tomatoes. Food Chem 81(2):275–279

    Article  CAS  Google Scholar 

  63. Sieso V, Crouzet J (1977) Tomato volatile components: effect of processing. Food Chem 2(4):241–252

    Article  CAS  Google Scholar 

  64. Marković K, Vahčić N, Ganić KK, Banović M (2007) Aroma volatiles of tomatoes and tomato products evaluated by solid-phase microextraction. Flavour Fragr J 22(5):395–400

    Article  Google Scholar 

  65. Kazeniac SJ, Hall RM (1970) Flavor chemistry of tomato volatiles. J Food Sci 35(5):519–530

    Article  CAS  Google Scholar 

  66. Holden JM, Eldridge AL, Beecher GR, Marilyn Buzzard I, Bhagwat S, Davis CS, Douglass LW, Gebhardt S, Haytowitz D, Schakel S (1999) Carotenoid content of U.S. foods: an update of the database. J Food Compos Anal 12(3):169–196

    Article  CAS  Google Scholar 

  67. Huor SS, Ahmed EM, Carter RD (1980) Concentration of watermelon juice. J Food Sci 45(3):718–719

    Article  Google Scholar 

  68. Winterhalter P, Rouseff R (2001) Carotenoid-derived aroma compounds: an introduction. In: Carotenoid-derived aroma compounds, vol 802. ACS symposium series. American Chemical Society, Washington, DC, pp 1–17

  69. Lewinsohn E, Sitrit Y, Bar E, Azulay Y, Ibdah M, Meir A, Yosef E, Zamir D, Tadmor Y (2005) Not just colors—carotenoid degradation as a link between pigmentation and aroma in tomato and watermelon fruit. Trends Food Sci Technol 16(9):407–415

    Article  CAS  Google Scholar 

  70. Cole ER, Kapur NS (1957) The stability of lycopene. I.-Degradation by oxygen. J Sci Food Agric 8(6):360–365

    Article  CAS  Google Scholar 

  71. Wolken WAM, ten Have R, van der Werf MJ (2000) Amino acid-catalyzed conversion of citral: cis-trans Isomerization and its conversion into 6-methyl-5-hepten-2-one and acetaldehyde. J Agric Food Chem 48(11):5401–5405

    Article  CAS  Google Scholar 

  72. Tangwongchai R, Ledward DA, Ames JM (2000) Effect of high-pressure treatment on lipoxygenase activity. J Agric Food Chem 48(7):2896–2902

    Article  CAS  Google Scholar 

  73. Schreier P, Drawert F, Junker A (1977) Ueber die quantitative Zusammensetzung natuerlicher und technologisch veraenderter pflanzlicher Aromen. IV. Enzymatische und thermische Reaktionsprodukte bei der Verarbeitung von Tomaten. Z Lebensm Unters-Forsch 165:23–27

    Article  CAS  Google Scholar 

  74. Condurso C, Verzera A, Dima G, Tripodi G, Crino P, Paratore A, Romano D (2012) Effects of different rootstocks on aroma volatile compounds and carotenoid content of melon fruits. Sci Hortic 148:9–16

    Article  CAS  Google Scholar 

  75. Ortiz-Serrano P, Gil JV (2007) Quantitation of free and glycosidically bound volatiles in and effect of glycosidase addition on three tomato varieties (Solanum lycopersicum L.). J Agric Food Chem 55(22):9170–9176

    Article  CAS  Google Scholar 

  76. Servili M, Selvaggini R, Begliomini AL, Montedoro GF (1998) Effect of thermal treatment in the headspace volatile compounds of tomato juice. In: Contis ET, Ho C-T, Mussinan CJ, Parliment TH, Shahidi F, Spanier AM (eds) Developments in food science. Food Flavors: Formation, Analysis and Packaging Influences, Proceedings of the 9th International Flavor Conference, The George Charalambous Memorial Symposium, Limnos, Greece, 1–4 July 1997, vol 40. Elsevier, pp 315–330

  77. Buttery RG, Teranishi R, Flath RA, Ling LC (1990) Identification of additional tomato paste volatiles. J Agric Food Chem 38(3):792–795

    Article  CAS  Google Scholar 

  78. Belitz H-D, Grosch W, Schieberle P (2009) Aroma compounds. Food Chemistry. Springer, Berlin, pp 340–402

    Google Scholar 

  79. Krumbein A, Peters P, Brueckner B (2004) Flavour compounds and a quantitative descriptive analysis of tomatoes (Lycopersicon esculentum Mill.) of different cultivars in short-term storage. Postharvest Biol Technol 32(1):15–28

    Article  CAS  Google Scholar 

  80. Smit BA, Engels WJ, Smit G (2009) Branched chain aldehydes: production and breakdown pathways and relevance for flavour in foods. Appl Microbiol Biotechnol 81(6):987–999

    Article  CAS  Google Scholar 

  81. Baldwin EA, Goodner K, Plotto A, Pritchett K, Einstein M (2004) Effect of volatiles and their concentration on perception of tomato descriptors. J Food Sci 69(8):S310–S318

    Article  CAS  Google Scholar 

  82. Baldwin EA, Scott JW, Shewmaker CK, Schuch W (2000) Flavor trivia and tomato aroma: biochemistry and possible mechanisms for control of important aroma components. HortScience 35(6):1013–1022

    CAS  Google Scholar 

  83. Buttery RG, Teranishi R, Ling LC, Turnbaugh JG (1990) Quantitative and sensory studies on tomato paste volatiles. J Agric Food Chem 38(1):336–340

    Article  CAS  Google Scholar 

  84. Krumbein A, Auerswald H (1998) Characterization of aroma volatiles in tomatoes by sensory analyses. Food 42(06):395–399

    CAS  Google Scholar 

  85. Sheldon RM, Lindsay RC, Libbey LM, Morgan ME (1971) Chemical nature of malty flavor and aroma produced by Streptococcus lactis var. maltigenes. Appl Microbiol 22(3):263–266

    CAS  Google Scholar 

  86. Cosmai L, Summo C, Caponio F, Paradiso VM, Gomes T (2013) Influence of the thermal stabilization process on the volatile profile of canned tomato-based food. J Food Sci 78(12):C1865–C1870

    Article  CAS  Google Scholar 

  87. Kebede BT, Grauwet T, Mutsokoti L, Palmers S, Vervoort L, Hendrickx M, Van Loey A (2014) Comparing the impact of high pressure high temperature and thermal sterilization on the volatile fingerprint of onion, potato, pumpkin and red beet. Food Res Int 56:218–225

    Article  CAS  Google Scholar 

  88. Kebede BT, Grauwet T, Palmers S, Vervoort L, Carle R, Hendrickx M, Van Loey A (2013) Effect of high pressure high temperature processing on the volatile fraction of differently coloured carrots. Food Chem 153:340–352

    Article  Google Scholar 

Download references

Acknowledgments

This research was financially supported by the Seventh Framework Programme (FP7) of the European Union under the Marie Curie Initial Training Network ‘HST FoodTrain’ (Grant Agreement 264470), the KU Leuven Research Fund and the Research Foundation Flanders (FWO).

Author contributions

K. Aganovic designed the study, interpreted the results and drafted the manuscript. T. Grauwet supported in design of the study, interpretation of the results and preparation of manuscript. C. Siemer supported the practical work. S. Toepfl, V. Heinz and M. Hendrickx gave valuable input and supported the interpretation of the results. A. V. Loey guided the study design and supported the manuscript draft.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ann Van Loey.

Ethics declarations

Conflict of interest

None.

Compliance with ethical requirements

This article does not contain any studies with human or animal subjects.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aganovic, K., Grauwet, T., Siemer, C. et al. Headspace fingerprinting and sensory evaluation to discriminate between traditional and alternative pasteurization of watermelon juice. Eur Food Res Technol 242, 787–803 (2016). https://doi.org/10.1007/s00217-015-2586-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-015-2586-8

Keywords

Navigation