Skip to main content
Log in

Ligand-targeted fishing of α-glucosidase inhibitors from Tribulus terrestris L. based on chitosan-functionalized multi-walled carbon nanotubes with immobilized α-glucosidase

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

α-Glucosidase inhibitors in natural products are one of the promising drugs for the treatment of type 2 diabetes. However, due to the complexity of the matrix, it is challenging to comprehensibly clarify the specific pharmacodynamic substances. In this study, a novel high-throughput inhibitor screening strategy was established based on covalent binding of α-glucosidase on chitosan-functionalized multi-walled carbon nanotubes coupled with high-resolution mass spectrometry. The synthesized MWCNTs@CS@GA@α-Glu was characterized by TEM, SEM, FTIR, Raman, and TG. Performance studies showed that the microreactor exhibited stronger thermostability and pH tolerance than that of the free one while maintaining its inherent catalytic activity. Feasibility study applying a model mixture of known α-glucosidase ligand and non-ligands indicated the selectivity and specificity of the system. By integrating ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-QTOF-MS) with ion mobility mass spectrometry (IMS), 15 ligands were obtained and tentatively identified from Tribulus terrestris L., including 8 steroidal saponins, 4 flavonoids, and 3 alkaloids. These inhibitors were further validated by in vivo experiments and molecular docking simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Sun W, Wu C, Fan G, Hao G, Shi H, Zhang C. Preparation of a functional beverage with alpha-glucosidase inhibitory peptides obtained from ginkgo seeds. J Food Sci Technol-Mysore. 2021;58(12):4495–503. https://doi.org/10.1007/s13197-020-04931-3.

  2. Ercan P, El SN. Inhibitory effects of chickpea and Tribulus terrestris on lipase, α-amylase and α-glucosidase. Food Chem. 2016;208:338. https://doi.org/10.1016/j.foodchem.2016.04.062.

    Article  CAS  PubMed  Google Scholar 

  3. Hunziker W, Spiess M, Semenza G, Lodish HF. The sucrase-isomaltase complex: primary structure, membrane-orientation, and evolution of a stalked, intrinsic brush border protein. Cell. 1986;46(2):227–34. https://doi.org/10.1016/0092-8674(86)90739-7.

    Article  CAS  PubMed  Google Scholar 

  4. Li P, Ma XH, Dong YM, Jin L, Chen J. alpha-Glucosidase immobilization on polydopamine-coated cellulose filter paper and enzyme inhibitor screening. Anal Biochem. 2020;605:113832. https://doi.org/10.1016/j.ab.2020.113832.

  5. Iijima S. Helical microtubules of graphitic carbon. Nature. 1991;354(6348):56–8. https://doi.org/10.1038/354056a0.

    Article  CAS  Google Scholar 

  6. Yang S, Zhao D, Xu Z, Yu H, Zhou J. Molecular understanding of acetylcholinesterase adsorption on functionalized carbon nanotubes for enzymatic biosensors. Phys Chem Chem Phys. 2022;24(5):2866–78. https://doi.org/10.1039/d1cp04997f.

    Article  CAS  PubMed  Google Scholar 

  7. Jin X-H, Ishii A, Aoki K, Ishida S, Mukasa K, Ohno S. Detection of human adenovirus hexon antigen using carbon nanotube sensors. J Virol Methods. 2011;171(2):405–7. https://doi.org/10.1016/j.jviromet.2010.12.004.

    Article  CAS  PubMed  Google Scholar 

  8. Fan PC, Liu LJ, Guo QH, Wang JL, Yang JH, Guan XY, et al. Three-dimensional N-doped carbon nanotube@carbon foam hybrid: an effective carrier of enzymes for glucose biosensors. Rsc Adv. 2017;7(43):26574–82. https://doi.org/10.1039/c7ra02592k.

    Article  CAS  Google Scholar 

  9. Kim Y, Hong JS, Moon SY, Hong J-Y, Lee JU. Evaluation of carbon nanotubes dispersion in aqueous solution with various dispersing agents. Carbon Lett. 2021;31(6):1327–37. https://doi.org/10.1007/s42823-021-00285-8.

    Article  Google Scholar 

  10. Koppolu Bp, Smith SG, Ravindranathan S, Jayanthi S, Suresh Kumar TK, Zaharoff DA. Controlling chitosan-based encapsulation for protein and vaccine delivery. Biomaterials. 2014;35(14):4382–9. https://doi.org/10.1016/j.biomaterials.2014.01.078.

  11. Liu X, Dong X, Zhong S, Xia J, He J, Deng Y, et al. One-step solid-state fermentation for efficient erythritol production from the simultaneous saccharified crop wastes by incorporating immobilized cellulase. Ind Crop Prod. 2022;176:114351. https://doi.org/10.1016/j.indcrop.2021.114351.

  12. Yu Y, Zhang Z, Dai L, Wang F. Copolymer-induced intermolecular charge transfer: enhancing the activity of metal-free catalysts for oxygen reduction. Chem-Eur. 2019;25(22):5652–7. https://doi.org/10.1002/chem.201806226.

    Article  CAS  Google Scholar 

  13. Welsher K, Liu Z, Daranciang D, Dai H. Selective probing and imaging of cells with single walled carbon nanotubes as near-infrared fluorescent molecules. Nano Lett. 2008;8(2):586–90. https://doi.org/10.1021/nl072949q.

    Article  CAS  PubMed  Google Scholar 

  14. Zhan Y, Pan L, Nie C, Li H, Sun Z. Carbon nanotube–chitosan composite electrodes for electrochemical removal of Cu(II) ions. J Alloy Compd. 2011;509(18):5667–71. https://doi.org/10.1016/j.jallcom.2011.02.118.

    Article  CAS  Google Scholar 

  15. Razzokov J, Marimuthu P, Saidov K, Ruzimuradov O, Mamatkulov S. Penetration of chitosan into the single walled armchair carbon nanotubes: atomic scale insight. Crystals. 2021;11(10):1174.

    Article  CAS  Google Scholar 

  16. Hwang J-Y, Kim H-S, Kim JH, Shin US, Lee S-H. Carbon nanotube nanocomposites with highly enhanced strength and conductivity for flexible electric circuits. Langmuir. 2015;31(28):7844–51. https://doi.org/10.1021/acs.langmuir.5b00845.

    Article  CAS  PubMed  Google Scholar 

  17. Rungrotmongkol T, Arsawang U, Iamsamai C, Vongachariya A, Dubas ST, Ruktanonchai U, et al. Increased dispersion and solubility of carbon nanotubes noncovalently modified by the polysaccharide biopolymer, chitosan: MD simulations. Chem Phys Lett. 2011;507(1):134–7. https://doi.org/10.1016/j.cplett.2011.03.066.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Shieh Y-T, Wu H-M, Twu Y-K, Chung Y-C. An investigation on dispersion of carbon nanotubes in chitosan aqueous solutions. Colloid Polym. 2010;288(4):377–85. https://doi.org/10.1007/s00396-009-2126-9.

    Article  CAS  Google Scholar 

  19. Cheng G, Xing J, Pi Z, Liu S, Liu Z, Song F. α-Glucosidase immobilization on functionalized Fe3O4 magnetic nanoparticles for screening of enzyme inhibitors. Chin Chem Lett. 2019;30(3):656–9. https://doi.org/10.1016/j.cclet.2018.12.003.

    Article  CAS  Google Scholar 

  20. Sorouraddin M-H, Amini K, Naseri A, Vallipour J, Hanaee J, Rashidi M-R. A new multi-wavelength model-based method for determination of enzyme kinetic parameters. J Biosci. 2010;35(3):395–403. https://doi.org/10.1007/s12038-010-0045-z.

    Article  CAS  PubMed  Google Scholar 

  21. Liu DM, Chen J, Shi YP. Screening of enzyme inhibitors from traditional Chinese medicine by magnetic immobilized alpha-glucosidase coupled with capillary electrophoresis. Talanta. 2017;164:548–55. https://doi.org/10.1016/j.talanta.2016.12.028.

    Article  CAS  PubMed  Google Scholar 

  22. Dadfar SMM, Kavoosi G, Dadfar SMA. Investigation of mechanical properties, antibacterial features, and water vapor permeability of polyvinyl alcohol thin films reinforced by glutaraldehyde and multiwalled carbon nanotube. Polym Compos. 2014;35(9):1736–43. https://doi.org/10.1002/pc.22827.

    Article  CAS  Google Scholar 

  23. Bosley JA, Peilow AD. Immobilization of lipases on porous polypropylene: reduction in esterification efficiency at low loading. J Am Oil Chem Soc. 1997;74(2):107–11. https://doi.org/10.1007/s11746-997-0153-6.

    Article  CAS  Google Scholar 

  24. Cheng G, Pi Z, Zheng Z, Liu S, Liu Z, Song F. Magnetic nanoparticles-based lactate dehydrogenase microreactor as a drug discovery tool for rapid screening inhibitors from natural products. Talanta. 2020;209:120554. https://doi.org/10.1016/j.talanta.2019.120554.

  25. Wu X, Qiu B, Chen Y, Shi Y, Zhu J, Liu X, et al. Online coupling Fe3O4@ZIF-67@alpha-glucosidase biomicroreactor with high performance liquid chromatography for rapid screening of alpha-glucosidase inhibitors in tea and their inhibitory activity research. J Chromatogr B. 2020;1159:122398. https://doi.org/10.1016/j.jchromb.2020.122398.

  26. Ma F, Wang Y, Yang G. The Modulation of Chitosan-DNA Interaction by Concentration and pH in Solution. Polymers. 2019;11(4). https://doi.org/10.3390/polym11040646.

  27. Liu DM, Chen J, Shi YP. alpha-Glucosidase immobilization on chitosan-enriched magnetic composites for enzyme inhibitors screening. Int J Biol Macromol. 2017;105(Pt 1):308–16. https://doi.org/10.1016/j.ijbiomac.2017.07.045.

    Article  CAS  PubMed  Google Scholar 

  28. Aggarwal S, Ikram S. Zinc oxide nanoparticles-impregnated chitosan surfaces for covalent immobilization of trypsin: stability & kinetic studies. Int J Biol Macromol. 2022;207:205–21. https://doi.org/10.1016/j.ijbiomac.2022.03.014.

    Article  CAS  PubMed  Google Scholar 

  29. Singh AN, Singh S, Suthar N, Dubey VK. Glutaraldehyde-activated chitosan matrix for immobilization of a novel cysteine protease. Procerain B Food Chem. 2011;59(11):6256–62. https://doi.org/10.1021/jf200472x.

    Article  CAS  Google Scholar 

  30. Diyanat S, Homaei A, Mosaddegh E. Immobilization of Penaeus vannamei protease on ZnO nanoparticles for long-term use. Int J Biol Macromol. 2018;118:92–8. https://doi.org/10.1016/j.ijbiomac.2018.06.075.

    Article  CAS  PubMed  Google Scholar 

  31. He J, Sun S, Zhou Z, Yuan Q, Liu Y, Liang H. Thermostable enzyme-immobilized magnetic responsive Ni-based metal-organic framework nanorods as recyclable biocatalysts for efficient biosynthesis of S-adenosylmethionine. Dalton Trans. 2019;48(6):2077–85. https://doi.org/10.1039/c8dt04857f.

    Article  CAS  PubMed  Google Scholar 

  32. Tavares APM, Silva CG, Dražić G, Silva AMT, Loureiro JM, Faria JL. Laccase immobilization over multi-walled carbon nanotubes: kinetic, thermodynamic and stability studies. J Colloid Interface Sci. 2015;454:52–60. https://doi.org/10.1016/j.jcis.2015.04.054.

    Article  CAS  PubMed  Google Scholar 

  33. Javid A, Amiri H, Kafrani AT, Rismani-Yazdi H. Post-hydrolysis of cellulose oligomers by cellulase immobilized on chitosan-grafted magnetic nanoparticles: a key stage of butanol production from waste textile. Int J Biol Macromol. 2022. https://doi.org/10.1016/j.ijbiomac.2022.03.013.

    Article  PubMed  Google Scholar 

  34. Khan M, Husain Q, Bushra R. Immobilization of β-galactosidase on surface modified cobalt/multiwalled carbon nanotube nanocomposite improves enzyme stability and resistance to inhibitor. Int J Biol Macromol. 2017;105(Pt 1):693–701. https://doi.org/10.1016/j.ijbiomac.2017.07.088.

    Article  CAS  PubMed  Google Scholar 

  35. Amin F, Bhatti HN, Bilal M, Asgher M. Improvement of activity, thermo-stability and fruit juice clarification characteristics of fungal exo-polygalacturonase. Int J Biol Macromol. 2017;95:974–84. https://doi.org/10.1016/j.ijbiomac.2016.10.086.

    Article  CAS  PubMed  Google Scholar 

  36. Li P, Ma XH, Jin L, Chen J. Dopamine-polyethyleneimine co-deposition cellulose filter paper for alpha-Glucosidase immobilization and enzyme inhibitor screening. J Chromatogr B. 2021;1167:122582. https://doi.org/10.1016/j.jchromb.2021.122582.

  37. Wan GZ, Ma XH, Jin L, Chen J. alpha-glucosidase immobilization on magnetic core-shell metal-organic frameworks for inhibitor screening from traditional Chinese medicines. Colloid Surf B-Biointerfaces. 2021;205:111847. https://doi.org/10.1016/j.colsurfb.2021.111847.

  38. Wan GZ, Ma XH, Jin L, Chen J. alpha-glucosidase immobilization on magnetic core-shell metal-organic frameworks for inhibitor screening from traditional Chinese medicines. Colloids Surf B Biointerfaces. 2021;205:111847. https://doi.org/10.1016/j.colsurfb.2021.111847.

  39. Wubshet SG, Liu B, Kongstad KT, Böcker U, Petersen MJ, Li T, et al. Combined magnetic ligand fishing and high-resolution inhibition profiling for identification of α-glucosidase inhibitory ligands: a new screening approach based on complementary inhibition and affinity profiles. Talanta. 2019;200:279–87. https://doi.org/10.1016/j.talanta.2019.03.047.

    Article  CAS  PubMed  Google Scholar 

  40. Jiang J, Yu Y, Wang L, Li J, Ling J, Li Y, et al. Enzyme immobilized on polyamidoamine-coated magnetic microspheres for α-glucosidase inhibitors screening from Radix Paeoniae Rubra extracts accompanied with molecular modeling. Talanta. 2019;195:127–36. https://doi.org/10.1016/j.talanta.2018.11.009.

    Article  CAS  PubMed  Google Scholar 

  41. Meng X, Xing JP, Liu S, Liu ZQ, Song FR. Comprehensive chemical profiling and potential chemical marker’s evaluation of Tribulus terrestris by UPLC-QTOF-MS in combination with ion mobility spectrometry. J Pharm Biomed Anal. 2022;217. https://doi.org/10.1016/j.jpba.2022.114839.

  42. Zhang Q, Xiao X, Li M, Li W, Yu M, Zhang H, et al. Acarbose reduces blood glucose by activating miR-10a-5p and miR-664 in diabetic rats. PLoS ONE. 2013;8(11):e79697. https://doi.org/10.1371/journal.pone.0079697.

  43. Nepal MR, Kang MJ, Kim GH, Cha DH, Kim JH, Jeong TC. Role of intestinal microbiota in metabolism of voglibose in vitro and in vivo. Diabetes Metab J. 2020;44(6):908–18. https://doi.org/10.4093/dmj.2019.0147.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Song X, Yuan Y, Wang S, Sun X, Zhang C, Gao P, et al. Pharmacokinetic comparisons of six steroid saponins in rat plasma following oral administration of crude and stir-fried Fructus Tribuli extracts by UHPLC-MS/MS. Biomed Chromatogr. 2021;35(10):e5151. https://doi.org/10.1002/bmc.5151.

  45. Han L, Song J, Yan C, Wang C, Wang L, Li W, et al. Inhibitory activity and mechanism of calycosin and calycosin-7-O-β-D-glucoside on α-glucosidase: Spectroscopic and molecular docking analyses. Process Biochem. 2022;118:227–35. https://doi.org/10.1016/j.procbio.2022.04.035.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Nature Science Foundation of China (No. 81273952) and the Science and the Youth Innovation Promotion Association of CAS (Grant No. 2019227).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shu Liu.

Ethics declarations

Animal studies

Animal experiments were approved by the Animal Ethics Committee of Changchun Institute of Applied Chemistry (approval number: 2021-39), and were performed in compliance with the NIH guide for the care and use of laboratory animals.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1.42 MB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, X., Zong, H., Zheng, Z. et al. Ligand-targeted fishing of α-glucosidase inhibitors from Tribulus terrestris L. based on chitosan-functionalized multi-walled carbon nanotubes with immobilized α-glucosidase. Anal Bioanal Chem 415, 2677–2692 (2023). https://doi.org/10.1007/s00216-023-04666-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-023-04666-y

Keywords

Navigation