Skip to main content
Log in

The interfacial interactions of nanomaterials with human serum albumin

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The fates of nanomaterials (NMs) in vivo are greatly dependent on their interactions with human serum proteins. However, the interfacial molecular details of NMs-serum proteins are still difficult to be probed. Herein, the molecular interaction details of human serum albumin (HSA) with Au and SiO2 nanoparticles have been systematically interrogated and compared by using lysine reactivity profiling mass spectrometry (LRP-MS). We demonstrated the biocompatibility of Au is better than SiO2 nanoparticles and the NMs surface charge state played a more important role than particle size in the combination of NMs-HSA at least in the range of 15–40 nm. Our results will contribute to the fundamental mechanism understanding of NMs-serum protein interactions as well as the NMs rational design.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Carabineiro SAC (2017) Applications of gold nanoparticles in nanomedicine: recent advances in vaccines. Molecules 22(5). doi:https://doi.org/10.3390/molecules22050857

  2. He Y, Cong C, Li X, Zhu R, Li A, Zhao S, Li X, Cheng X, Yang M, Gao D. Nano-drug system based on hierarchical drug release for deep localized/systematic cascade tumor therapy stimulating antitumor immune responses. Theranostics. 2019;9(10):2897–909. https://doi.org/10.7150/thno.33534.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kelly HG, Kent SJ, Wheatley AK. Immunological basis for enhanced immunity of nanoparticle vaccines. Expert Rev Vaccines. 2019;18(3):269–80. https://doi.org/10.1080/14760584.2019.1578216.

    Article  CAS  PubMed  Google Scholar 

  4. Li Y, Li X, Zhou F, Doughty A, Hoover AR, Nordquist RE, Chen WR. Nanotechnology-based photoimmunological therapies for cancer. Cancer Lett. 2019;442:429–38. https://doi.org/10.1016/j.canlet.2018.10.044.

    Article  CAS  PubMed  Google Scholar 

  5. Riley RS, Day ES (2017) Gold nanoparticle-mediated photothermal therapy: applications and opportunities for multimodal cancer treatment. Wiley Interdiscip Rev. Nanomed Nanobiotechnol 9(4). https://doi.org/10.1002/wnan.1449

  6. Yin Y, Yu S, Liu J, Jiang G. Thermal and photoinduced reduction of ionic Au(III) to elemental Au nanoparticles by dissolved organic matter in water: possible source of naturally occurring Au nanoparticles. Environ Sci Technol. 2014;48(5):2671–9. https://doi.org/10.1021/es404195r.

    Article  CAS  PubMed  Google Scholar 

  7. Sousa de Almeida M, Susnik E, Drasler B, Taladriz-Blanco P, Petri-Fink A, Rothen-Rutishauser B. Understanding nanoparticle endocytosis to improve targeting strategies in nanomedicine. Chem Soc Rev. 2021. https://doi.org/10.1039/d0cs01127d.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Cedervall T, Lynch I, Lindman S, Berggard T, Thulin E, Nilsson H, Dawson KA, Linse S. Understanding the nanoparticle-protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc Natl Acad Sci U S A. 2007;104(7):2050–5. https://doi.org/10.1073/pnas.0608582104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Nel AE, Madler L, Velegol D, Xia T, Hoek EM, Somasundaran P, Klaessig F, Castranova V, Thompson M. Understanding biophysicochemical interactions at the nano-bio interface. Nat Mater. 2009;8(7):543–57. https://doi.org/10.1038/nmat2442.

    Article  CAS  PubMed  Google Scholar 

  10. Lundqvist M, Stigler J, Elia G, Lynch I, Cedervall T, Dawson KA. Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc Natl Acad Sci U S A. 2008;105(38):14265–70. https://doi.org/10.1073/pnas.0805135105.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Tan Y, Chen M, Chen H, Wu J, Liu J (2021) Enhanced ultrasound contrast of renal-clearable luminescent gold nanoparticles. Angew Chem Int Ed Engl. https://doi.org/10.1002/anie.202017273

  12. Liu Y, Choi CKK, Hong H, Xiao Y, Kwok ML, Liu H, Tian XY, Choi CHJ. Dopamine receptor-mediated binding and cellular uptake of polydopamine-coated nanoparticles. ACS Nano. 2021. https://doi.org/10.1021/acsnano.1c06081.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Tang L, Cheng J. Nonporous silica nanoparticles for nanomedicine application. Nano Today. 2013;8(3):290–312. https://doi.org/10.1016/j.nantod.2013.04.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Disdier C, Devoy J, Cosnefroy A, Chalansonnet M, Herlin-Boime N, Brun E, Lund A, Mabondzo A. Tissue biodistribution of intravenously administrated titanium dioxide nanoparticles revealed blood-brain barrier clearance and brain inflammation in rat. Part Fibre Toxicol. 2015;12:27. https://doi.org/10.1186/s12989-015-0102-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Fu X, Fang Y, Zhao H, Liu S. Size-dependent binding of pristine fullerene (nC 60) nanoparticles to bovine/human serum albumin. J of Mol Struct. 2018;1166:442–7. https://doi.org/10.1016/j.molstruc.2018.04.067.

    Article  CAS  Google Scholar 

  16. Yang ST, Liu Y, Wang YW, Cao A. Biosafety and bioapplication of nanomaterials by designing protein-nanoparticle interactions. Small. 2013;9(9–10):1635–53. https://doi.org/10.1002/smll.201201492.

    Article  CAS  PubMed  Google Scholar 

  17. Cedervall T, Lynch I, Foy M, Berggard T, Donnelly SC, Cagney G, Linse S, Dawson KA. Detailed identification of plasma proteins adsorbed on copolymer nanoparticles. Angew Chem Int Ed Engl. 2007;46(30):5754–6. https://doi.org/10.1002/anie.200700465.

    Article  CAS  PubMed  Google Scholar 

  18. Subramanyam R, Gollapudi A, Bonigala P, Chinnaboina M, Amooru DG. Betulinic acid binding to human serum albumin: a study of protein conformation and binding affinity. J Photochem Photobiol B. 2009;94(1):8–12. https://doi.org/10.1016/j.jphotobiol.2008.09.002.

    Article  CAS  PubMed  Google Scholar 

  19. Wang L, Li J, Pan J, Jiang X, Ji Y, Li Y, Qu Y, Zhao Y, Wu X, Chen C. Revealing the binding structure of the protein corona on gold nanorods using synchrotron radiation-based techniques: understanding the reduced damage in cell membranes. J Am Chem Soc. 2013;135(46):17359–68. https://doi.org/10.1021/ja406924v.

    Article  CAS  PubMed  Google Scholar 

  20. Curry S, Mandelkow H, Brick P, Franks N. Crystal structure of human serum albumin complexed with fatty acid reveals an asymmetric distribution of binding sites. Nat Struct Biol. 1998;5(9):827–35. https://doi.org/10.1038/1869.

    Article  CAS  PubMed  Google Scholar 

  21. Huang H, Lai W, Cui M, Liang L, Lin Y, Fang Q, Liu Y, Xie L. An evaluation of blood compatibility of silver nanoparticles. Sci Rep. 2016;6:25518. https://doi.org/10.1038/srep25518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhou Y, Liu Z, Yao M, Chen J, Xiao Y, Han G, Shen J-R, Wang F (2021) Elucidating the molecular mechanism of dynamic photodamage of photosystem II membrane protein complex by integrated proteomics strategy. CCS Chem 443–454. https://doi.org/10.31635/ccschem.021.202000583

  23. Liu Z, Zhou Y, Liu J, Chen J, Heck AJR, Wang F. Reductive methylation labeling, from quantitative to structural proteomics. Trends Analyt Chem. 2019;118:771–8. https://doi.org/10.1016/j.trac.2019.07.009.

    Article  CAS  Google Scholar 

  24. Liu Z, Zhang W, Sun B, Ma Y, He M, Pan Y, Wang F. Probing conformational hotspots for the recognition and intervention of protein complexes by lysine reactivity profiling. Chem Sci. 2021;12:4. https://doi.org/10.1039/d0sc05330a.

    Article  CAS  Google Scholar 

  25. Baimanov D, Wu J, Chu R, Cai R, Wang B, Cao M, Tao Y, Liu J, Guo M, Wang J, Yuan X, Ji C, Zhao Y, Feng W, Wang L, Chen C. Immunological responses induced by blood protein coronas on two-dimensional MoS2 nanosheets. ACS Nano. 2020;14(5):5529–42. https://doi.org/10.1021/acsnano.9b09744.

    Article  CAS  PubMed  Google Scholar 

  26. Shi X, Li D, Xie J, Wang S, Wu Z, Chen H. Spectroscopic investigation of the interactions between gold nanoparticles and bovine serum albumin. Chinese Sci Bull. 2012;57(10):1109–15. https://doi.org/10.1007/s11434-011-4741-3.

    Article  CAS  Google Scholar 

  27. Dousa M, Brichac J, Gibala P, Lehnert P. Rapid hydrophilic interaction chromatography determination of lysine in pharmaceutical preparations with fluorescence detection after postcolumn derivatization with o-phtaldialdehyde. J Pharm Biomed Anal. 2011;54(5):972–8. https://doi.org/10.1016/j.jpba.2010.11.026.

    Article  CAS  PubMed  Google Scholar 

  28. Zhou Y, Wu Y, Yao M, Liu Z, Chen J, Chen J, Tian L, Han G, Shen JR, Wang F. Probing the lysine proximal microenvironments within membrane protein complexes by active dimethyl labeling and mass spectrometry. Anal Chem. 2016;88(24):12060–5. https://doi.org/10.1021/acs.analchem.6b02502.

    Article  CAS  PubMed  Google Scholar 

  29. Chen J, Wang A, Liu B, Zhou Y, Luo P, Zhang Z, Li G, Liu Q, Wang F. Quantitative lysine reactivity profiling reveals conformational inhibition dynamics and potency of aurora A kinase inhibitors. Anal Chem. 2019;91(20):13222–9. https://doi.org/10.1021/acs.analchem.9b03647.

    Article  CAS  PubMed  Google Scholar 

  30. Zhou Y, Liu Z, Zhang J, Dou T, Chen J, Ge G, Zhu S, Wang F. Prediction of ligand modulation patterns on membrane receptors via lysine reactivity profiling. Chem Commun (Camb). 2019;55(30):4311–4. https://doi.org/10.1039/c9cc00520j.

    Article  CAS  Google Scholar 

  31. Shang X, Chen H, Castagnola V, Liu K, Boselli L, Petseva V, Yu L, Xiao L, He M, Wang F, Dawson KA, Fan J. Unusual zymogen activation patterns in the protein corona of Ca-zeolites. Nat Catal. 2021;4(7):607–14. https://doi.org/10.1038/s41929-021-00654-6.

    Article  CAS  Google Scholar 

  32. Yu L, Yu B, Chen H, Shang X, He M, Lin M, Li D, Zhang W, Kang Z, Li J, Wang F, Xiao L, Wang Q, Fan J. Highly efficient artificial blood coagulation shortcut confined on Ca-zeolite surface. Nano Res. 2021;14(9):3309–18. https://doi.org/10.1007/s12274-021-3394-z.

    Article  CAS  Google Scholar 

  33. Lynn GM, Laga R, Jewell CM. Induction of anti-cancer T cell immunity by in situ vaccination using systemically administered nanomedicines. Cancer Lett. 2019;459:192–203. https://doi.org/10.1016/j.canlet.2019.114427.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mei L, Rao J, Liu Y, Li M, Zhang Z, He Q. Effective treatment of the primary tumor and lymph node metastasis by polymeric micelles with variable particle sizes. J Control Release. 2018;292:67–77. https://doi.org/10.1016/j.jconrel.2018.04.053.

    Article  CAS  PubMed  Google Scholar 

  35. Popovic Z, Liu W, Chauhan VP, Lee J, Wong C, Greytak AB, Insin N, Nocera DG, Fukumura D, Jain RK, Bawendi MG. A nanoparticle size series for in vivo fluorescence imaging. Angew Chem Int Ed Engl. 2010;49(46):8649–52. https://doi.org/10.1002/anie.201003142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gao D, Tian Y, Bi S, Chen Y, Yu A, Zhang H. Studies on the interaction of colloidal gold and serum albumins by spectral methods. Spectrochim Acta A Mol Biomol Spectrosc. 2005;62(4–5):1203–8. https://doi.org/10.1016/j.saa.2005.04.026.

    Article  CAS  PubMed  Google Scholar 

  37. Mueller R, Kammler HK, Wegner K, Pratsinis SE. OH surface density of SiO2 and TiO2 by thermogravimetric analysis. Langmuir. 2003;19(1):160–5. https://doi.org/10.1021/la025785w.

    Article  CAS  Google Scholar 

  38. Ramezani F, Rafii-Tabar H. An in-depth view of human serum albumin corona on gold nanoparticles. Mol Biosyst. 2015;11(2):454–62. https://doi.org/10.1039/c4mb00591k.

    Article  CAS  PubMed  Google Scholar 

  39. Givens BE, Xu Z, Fiegel J, Grassian VH. Bovine serum albumin adsorption on SiO2 and TiO2 nanoparticle surfaces at circumneutral and acidic pH: a tale of two nano-bio surface interactions. J Colloid Interface Sci. 2017;493:334–41. https://doi.org/10.1016/j.jcis.2017.01.011.

    Article  CAS  PubMed  Google Scholar 

  40. Hamilton JA, Era S, Bhamidipati SP, Reed RG. Locations of the 3 primary binding sites for long chain fatty acid on bovin serum albumin. Proc Natl Acad Sci U S A. 1991;88(6):2051–4. https://doi.org/10.1073/pnas.88.6.2051.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Choi HS, Liu W, Misra P, Tanaka E, Zimmer JP, Ipe BI, Bawendi MG, Frangioni JV. Renal clearance of quantum dots. Nat Biotechnol. 2007;25(10):1165–70. https://doi.org/10.1038/nbt1340.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kobayashi H, Brechbiel MW. Nano-sized MRI contrast agents with dendrimer cores. Adv Drug Deliv Rev. 2005;57(15):2271–86. https://doi.org/10.1016/j.addr.2005.09.016.

    Article  CAS  PubMed  Google Scholar 

  43. Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK, Goeke NM, Olson BJ, Klenk DC. Measurement of protein using bicinchoninic acid. Anal Biochem. 1985;150(1):76–85. https://doi.org/10.1016/0003-2697(85)90442-7.

    Article  CAS  PubMed  Google Scholar 

  44. Walkey CD, Olsen JB, Song F, Liu R, Guo H, Olsen DW, Cohen Y, Emili A, Chan WC. Protein corona fingerprinting predicts the cellular interaction of gold and silver nanoparticles. ACS Nano. 2014;8(3):2439–55. https://doi.org/10.1021/nn406018q.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledged the financial support by the National Key R&D Program of China (2019YFE0119300), National Natural Science Foundation of China (32088101), the Original Innovation Project of CAS (ZDBS-LY-SLH032), and the grant from DICP (DICPI202007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fangjun Wang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 5280 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, M., Zhang, W., Liu, Z. et al. The interfacial interactions of nanomaterials with human serum albumin. Anal Bioanal Chem 414, 4677–4684 (2022). https://doi.org/10.1007/s00216-022-04089-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-022-04089-1

Keywords

Navigation