Skip to main content
Log in

Simple construction of a two-component fluorescent sensor for turn-on detection of Hg2+ in human serum

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The simply constructed fluorescent sensor with inexpensive reagents and low toxicity has attracted increasing attention contributing to its practical application. However, the common construction methods usually required a few building blocks and complex procedures, which is inconvenient for their further application. Herein, a simply constructed fluorescent Hg2+ sensor has been developed based on the intrinsic fluorescence quenching power of G-quadruplex. Two components, AGRO 100 and AMT, were used to construct the sensor. AMT was selected as the fluorescent probe because of its distinct merits. The free AMT emits strongly. However, the fluorescence of AMT could be quenched by G-quadruplex DNA. Additionally, AMT is less toxic and inexpensive. AGRO 100 acts as both the quencher and the capture sequence because it consists of G-rich sequences and T-T mismatched base pairs. The fluorescence of AMT could be quenched by the formed G-quadruplex structure of AGRO 100 in the presence of K+. In the presence of Hg2+, G-quadruplex structure of AGRO 100 was switched to hairpin DNA structure because T-T mismatched base pairs in AGRO 100 could specifically recognize and capture Hg2+ with high affinity. Thus, AMT was released and the fluorescence of AMT was recovered. The developed sensing system was successfully applied to detect Hg2+ in human serum with good recovery and reproducibility.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Clarkson TW, Magos L, Myers GJ. The toxicology of mercury - current exposures and clinical manifestations. N Engl J Med. 2003;349:1731–7.

    Article  CAS  PubMed  Google Scholar 

  2. Fouzia T, Atif Y, Shazia T, Ran A, Anderson WA. Colorimetric detection of mercury ions in water with capped silver nanoprisms. Materials. 2019;12:1533.

    Article  Google Scholar 

  3. Zhang L, Wang S, Wu Q, Wang F, Lin CJ, Zhang L, Hui M, Yang MH, Su H, Hao J. Mercury transformation and speciation in flue gases from anthropogenic emission sources: a critical review. Atmos Chem Phys. 2016;16:2417–33.

    Article  CAS  Google Scholar 

  4. Xiong E, Wu L, Zhou J, Yu P, Zhang X, Chen J. A ratiometric electrochemical biosensor for sensitive detection of Hg2+ based on thymine–Hg2+–thymine structure. Anal Chim Acta. 2015;853:242–8.

    Article  CAS  PubMed  Google Scholar 

  5. Wang Y, Yang F, Yang X. Colorimetric detection of mercury(II) ion using unmodified silver nanoparticles and mercury-specific oligonucleotides. ACS Appl Mater Inter. 2010;2:339–42.

    Article  CAS  Google Scholar 

  6. Li N, He Y, Lian J, Liu QY, Zhang YX, Zhang X. Hg2+ significantly enhancing the peroxidase-like activity of H2TCPP/ZnS/CoS nanoperoxidases by inducing the formation of surface-cation defects and application for the sensitive and selective detection of Hg2+ in the environment. Inorg Chem. 2020;59:18384–95.

    Article  CAS  PubMed  Google Scholar 

  7. Choudhury N, Ruidas B, Mukhopadhyay CD, De P. Rhodamine-appended polymeric probe: an efficient colorimetric and fluorometric sensing platform for Hg2+ in aqueous medium and living cells. ACS Appl Polym Mater. 2020;2:5077–85.

    Article  CAS  Google Scholar 

  8. Li Y, Xie JF, Chang CC, Wang CM, Tu HL. Highly sensitive detection of mercury ions using zincophosphite framework nanoparticle–polyaniline composites. ACS Appl Nano Mater. 2020;3:9724–30.

    Article  CAS  Google Scholar 

  9. Cui Y, Tang Y, Fan S, Ge Y, Han M, Liu J, Li M, Hu J. Bulk phase-encoded gold nanoparticles: the fourth-generation surface-enhanced Raman scattering tag for Hg2+ ion detection. J Phys Chem C. 2020;124:19267–72.

    Article  CAS  Google Scholar 

  10. Kamyabi MA, Aghaei A. A simple and selective approach for determination of trace Hg(II) using electromembrane extraction followed by graphite furnace atomic absorption spectrometry. Spectrochim Acta B. 2017;128:17–21.

    Article  CAS  Google Scholar 

  11. Volkov DS, Proskurnin MA, Korobov MV. Survey study of mercury determination in detonation nanodiamonds by pyrolysis flameless atomic absorption spectroscopy. Diam Relat Mater. 2014;50:60–5.

    Article  CAS  Google Scholar 

  12. Bozorgzadeh E, Pasdaran A, Ebrahimi-Najafabadi H. Determination of toxic heavy metals in fish samples using dispersive micro solid phase extraction combined with inductively coupled plasma optical emission spectroscopy. Food Chem. 2021;346:128916.

    Article  CAS  PubMed  Google Scholar 

  13. Dos Santos ÉJ, Herrmann AB, Vieira F, Sato CS, Corrêa QB, Maranhão TA, Tormen L, Curtius AJ. Determination of Hg and Pb in compact fluorescent lamp by slurry sampling inductively coupled plasma optical emission spectrometry. Microchem J. 2010;96:27–31.

    Article  Google Scholar 

  14. Zhang D, Yang S, Ma Q, Sun J, Cheng H, Wang Y, Liu J. Simultaneous multi-elemental speciation of As, Hg and Pb by inductively coupled plasma mass spectrometry interfaced with high-performance liquid chromatography. Food Chem. 2020;313:126119.

    Article  PubMed  Google Scholar 

  15. Seibert EL, Dressler VL, Pozebon D, Curtius AJ. Determination of Hg in seawater by inductively coupled plasma mass spectrometry after on-line pre-concentration. Spectrochim Acta B. 2001;56:1963–71.

    Article  Google Scholar 

  16. Yu X, Xiang L, Yang S, Qu S, Zeng X, Zhou Y, Yang R. A near-infrared fluorogenic probe with fast response for detecting sodium dithionite in living cells. Spectrochim Acta A. 2021;245:118887.

    Article  CAS  Google Scholar 

  17. Wang HB, Li Y, Chen Y, Zhang ZP, Gan T, Liu YM. Determination of the activity of alkaline phosphatase by using nanoclusters composed of flower-like cobalt oxyhydroxide and copper nanoclusters as fluorescent probes. Microchim Acta. 2018;185:102.

    Article  Google Scholar 

  18. Zhou W, Saran R, Liu J. Metal sensing by DNA. Chem Rev. 2017;117:8272–325.

    Article  CAS  PubMed  Google Scholar 

  19. Katz S. The reversible reaction of sodium thymonucleate and mercuric chloride. J Am Chem Soc. 1952;74:2238–45.

    Article  CAS  Google Scholar 

  20. Zhu G, Zhang CY. Functional nucleic acid-based sensors for heavy metal ion assays. Analyst. 2014;139:6326–42.

    Article  CAS  PubMed  Google Scholar 

  21. Ono A, Togashi H. Highly selective oligonucleotide-based sensor for mercury(II) in aqueous solutions. Angew Chem Int Ed. 2004;43:4300–2.

    Article  CAS  Google Scholar 

  22. Torigoe H, Ono A, Kozasa T. HgII ion specifically binds with T: T mismatched base pair in duplex DNA. Chem Eur J. 2010;16:13218–25.

    Article  CAS  PubMed  Google Scholar 

  23. Miyachi H, Matsui T, Shigeta Y, Hirao K. Effects of mercury(II) on structural properties, electronic structure and UV absorption spectra of a duplex containing thymine–mercury(II)–thymine nucleobase pairs. Phys Chem Chem Phys. 2010;12:909–17.

    Article  CAS  PubMed  Google Scholar 

  24. Fan SM, Chiang CY, Tseng YT, Wu TY, Chen YL, Huang CJ, Chau LK. Detection of Hg(II) at part-per-quadrillion levels by fiber optic plasmonic absorption using DNA hairpin and DNA-gold nanoparticle conjugates. ACS Appl Nano Mater. 2021;4:10128–35.

    Article  CAS  Google Scholar 

  25. Pi K, Liu J, Van Cappellen P. A DNA-based biosensor for aqueous Hg(II): performance under variable pH, temperature and competing ligand composition. J Hazard Mater. 2020;385:121572.

    Article  CAS  PubMed  Google Scholar 

  26. Wang X, Xu CF, Wang YX, Li W, Chen ZB. Electrochemical DNA sensor based on T-Hg-T p airs and exonuclease III for sensitive detection of Hg2+. Sensors Actuators B Chem. 2021;343:130151.

    Article  CAS  Google Scholar 

  27. Feng YX, Shao XL, Huang KL, Tian JJ, Mei XH, Luo YB, Xu WT. Mercury nanoladders: a new method for DNA amplification, signal identification and their application in the detection of Hg(II) ions. Chem Commun. 2018;54:8036–9.

    Article  CAS  Google Scholar 

  28. Miao P, Tang Y, Wang L. DNA modified Fe3O4@Au magnetic nanoparticles as selective probes for simultaneous detection of heavy metal ions. ACS Appl Mater Interfaces. 2017;9:3940–7.

    Article  CAS  PubMed  Google Scholar 

  29. Chiang CK, Huang CC, Liu CW, Chang HT. Oligonucleotide-based fluorescence probe for sensitive and selective detection of mercury(II) in aqueous solution. Anal Chem. 2008;80:3716–21.

    Article  CAS  PubMed  Google Scholar 

  30. Bo HY, Huang SF, Zeng WJ, Zhang M, Du QL, Guo QY, Gao Q. Fluorescence detection of Hg2+ based on Hg2+-induced formation of dsDNA. Chin J Anal Chem. 2011;39:1893–7.

    Article  CAS  Google Scholar 

  31. Wang J, Liu B. Highly sensitive and selective detection of Hg2+ in aqueous solution with mercury-specific DNA and Sybr Green I. Chem Commun. 2008;(39):4759–61. https://doi.org/10.1039/B806885B

  32. Wang YX, Geng FH, Cheng QL, Xu HY, Xu MT. Oligonucleotide-based label-free Hg2+ assay with a monomer–excimer fluorescence switch. Analyst. 2011;136:4284–8.

    Article  CAS  PubMed  Google Scholar 

  33. Tong L, Li L, Chen Z, Wang Q, Tang B. Stable label-free fluorescent sensing of biothiols based on ThT direct inducing conformation-specific G-quadruplex. Biosen Bioelectron. 2013;49:420–5.

    Article  CAS  Google Scholar 

  34. Yang H, Zhou Y, Liu J. G-quadruplex DNA for construction of biosensors. TrAC Trends Anal Chem. 2020;132:116060.

    Article  CAS  Google Scholar 

  35. Paul S, Samanta A. Ground- and excited-state interactions of a psoralen derivative with human telomeric G-quadruplex DNA. J Phys Chem B. 2018;122:2277–86.

    Article  CAS  PubMed  Google Scholar 

  36. Geng FH, Wang DD, Feng L, Li GX, Xu MT. An improved structure-switch aptamer-based fluorescent Pb2+ biosensor utilizing the binding induced quenching of AMT to G-quadruplex. Chem Commun. 2020;56:10517–20.

    Article  CAS  Google Scholar 

  37. Wang DD, Geng FH, Wang YX, Ma Y, Li GX, Qu P, Shao CY, Xu MT. Design of a fluorescence turn-on and label-free aptasensor using the intrinsic quenching power of G-quadruplex to AMT. Anal Sci. 2020;36:965–70.

    Article  CAS  PubMed  Google Scholar 

  38. Jia X, Li J, Wang E. Lighting-up of the dye malachite green with mercury(II)–DNA and its application for fluorescence turn-off detection of cysteine and glutathione. Chem Eur J. 2012;18:13494–500.

    Article  CAS  PubMed  Google Scholar 

  39. Li T, Dong S, Wang E. Label-free colorimetric detection of aqueous mercury ion (Hg2+) using Hg2+-modulated G-quadruplex-based DNAzymes. Anal Chem. 2009;81:2144–9.

    Article  CAS  PubMed  Google Scholar 

  40. Ma Y, Geng FH, Wang YX, Xu MT, Shao CY, Qu P, Zhang YT, Ye BX. Novel strategy to improve the sensing performances of split ATP aptamer based fluorescent indicator displacement assay through enhanced molecular recognition. Biosen Bioelectron. 2019;134:36–41.

    Article  CAS  Google Scholar 

  41. Miyake Y, Togashi H, Tashiro M, Yamaguchi H, Oda S, Kudo M, Tanaka Y, Kondo Y, Sawa R, Fujimoto T, Machinami T, Ono A. Mercury II-mediated formation of thymine−HgII−thymine base pairs in DNA duplexes. J Am Chem Soc. 2006;128:2172–3.

    Article  CAS  PubMed  Google Scholar 

  42. Hud NV, Smith FW, Anet FAL, Feigon J. The selectivity for K+ versus Na+ in DNA quadruplexes is dominated by relative free energies of hydration: a thermodynamic analysis by 1H NMR. Biochemistry. 1996;35:15383–90.

    Article  CAS  PubMed  Google Scholar 

  43. Wang YX, Li JS, Jin JY, Wang H, Tang HX, Yang RH, Wang KM. Strategy for molecular beacon binding readout: separating molecular recognition element and signal reporter. Anal Chem. 2009;81:9703–9.

    Article  CAS  PubMed  Google Scholar 

  44. Wu Y, Yue Y, Deng S, He G, Gao H, Zhou M, Zhong K, Deng R. Ratiometric-enhanced G-quadruplex probes for amplified and mix-to-read detection of mercury pollution in aquatic products. J Agric Food Chem. 2020;68:12124–31.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study received financial support from the National Natural Science Foundation of China (grant no. 21575087), Key Technology R&D Program of Jiangsu (BE2021632), Key R&D Program of XuZhou (KC20055), Natural Science Foundation of Anhui Provincial Department of Education (no. KJ2019A0598), Innovation Team of Peak Discipline of Chemistry (grant no. GFXK202108), and Innovation Scientists and Technicians Troop Construction Projects of Henan Province (grant no. 41).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guixin Li, Maotian Xu or Li Feng.

Ethics declarations

All experiments were performed in accordance with the guidelines about research involving human subjects (no. 20170201) and approved by the ethics committee of Henan Key Laboratory of Biomolecular Recognition & Sensing, Shangqiu Normal University (Shangqiu, China). Informed consent was obtained from all the participants of this study.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 203 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geng, F., Wang, D., Shao, C. et al. Simple construction of a two-component fluorescent sensor for turn-on detection of Hg2+ in human serum. Anal Bioanal Chem 414, 2021–2028 (2022). https://doi.org/10.1007/s00216-021-03837-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-021-03837-z

Keywords

Navigation